Add Cholesky, QR, and Triangular solve implementations.
* Adds lax.{cholesky,triangular_solve,qr}. Adds a JVP for Cholesky.
* Adds a transpose rule for add_p, needed by the Cholesky JVP.
* Adds np.linalg.{cholesky,qr,dot,matmul,trace}.
* Adds scipy.linalg.{cholesky,qr,solve_triangular,tril,triu}.
Pair programmed with mattjj.
2018-12-13 13:03:08 -05:00
|
|
|
# Copyright 2018 Google LLC
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# https://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
from __future__ import absolute_import
|
|
|
|
from __future__ import division
|
|
|
|
from __future__ import print_function
|
|
|
|
|
|
|
|
import numpy as onp
|
|
|
|
|
|
|
|
from jax.numpy import lax_numpy as np
|
|
|
|
from jax import core
|
|
|
|
from jax import lax
|
|
|
|
from jax.interpreters import xla
|
|
|
|
from jax.interpreters import ad
|
|
|
|
from jax.util import partial
|
|
|
|
from jax.abstract_arrays import ShapedArray
|
|
|
|
from jax.core import Primitive
|
|
|
|
from jax.lax import (standard_primitive, standard_unop, binop_dtype_rule,
|
|
|
|
_float, _complex, _input_dtype)
|
2018-12-17 14:36:21 -05:00
|
|
|
from jax.lib import xla_bridge
|
|
|
|
from jaxlib import lapack
|
Add Cholesky, QR, and Triangular solve implementations.
* Adds lax.{cholesky,triangular_solve,qr}. Adds a JVP for Cholesky.
* Adds a transpose rule for add_p, needed by the Cholesky JVP.
* Adds np.linalg.{cholesky,qr,dot,matmul,trace}.
* Adds scipy.linalg.{cholesky,qr,solve_triangular,tril,triu}.
Pair programmed with mattjj.
2018-12-13 13:03:08 -05:00
|
|
|
|
|
|
|
# traceables
|
|
|
|
|
|
|
|
def cholesky(x): return cholesky_p.bind(x)
|
|
|
|
|
|
|
|
def qr(x, full_matrices=True):
|
|
|
|
q, r = qr_p.bind(x, full_matrices=full_matrices)
|
|
|
|
return q, r
|
|
|
|
|
|
|
|
def triangular_solve(a, b, left_side=False, lower=False, transpose_a=False,
|
|
|
|
conjugate_a=False):
|
|
|
|
return triangular_solve_p.bind(
|
|
|
|
a, b, left_side=left_side, lower=lower, transpose_a=transpose_a,
|
|
|
|
conjugate_a=conjugate_a)
|
|
|
|
|
|
|
|
|
|
|
|
# utilities
|
|
|
|
|
|
|
|
def _T(x):
|
|
|
|
return np.swapaxes(x, -1, -2)
|
|
|
|
|
|
|
|
|
|
|
|
# primitives
|
|
|
|
|
|
|
|
|
|
|
|
def cholesky_jvp_rule(primals, tangents):
|
|
|
|
x, = primals
|
|
|
|
sigma_dot, = tangents
|
|
|
|
L = cholesky_p.bind(x)
|
|
|
|
|
|
|
|
# Forward-mode rule from https://arxiv.org/pdf/1602.07527.pdf
|
|
|
|
sigma_dot = (sigma_dot + _T(sigma_dot)) / 2
|
|
|
|
phi = lambda X: np.tril(X) / (1 + np.eye(x.shape[-1]))
|
|
|
|
tmp = triangular_solve(L, sigma_dot,
|
|
|
|
left_side=False, transpose_a=True, lower=True)
|
|
|
|
L_dot = lax.dot(L, phi(triangular_solve(
|
|
|
|
L, tmp, left_side=True, transpose_a=False, lower=True)))
|
|
|
|
return L, L_dot
|
|
|
|
|
|
|
|
cholesky_p = standard_unop(_float, 'cholesky')
|
|
|
|
ad.primitive_jvps[cholesky_p] = cholesky_jvp_rule
|
|
|
|
|
|
|
|
|
2018-12-17 14:36:21 -05:00
|
|
|
def cholesky_cpu_translation_rule(c, operand):
|
|
|
|
shape = c.GetShape(operand)
|
2018-12-17 16:39:19 -05:00
|
|
|
if len(shape.dimensions()) == 2 and (
|
|
|
|
shape.element_type() == np.float32 or shape.element_type() == np.float64):
|
|
|
|
return c.GetTupleElement(lapack.jax_potrf(c, operand, lower=True), 0)
|
2018-12-17 14:36:21 -05:00
|
|
|
else:
|
|
|
|
# Fall back to the HLO implementation for batched Cholesky decomposition or
|
|
|
|
# unsupported types.
|
|
|
|
# TODO(phawkins): support LAPACK primitives in batched mode.
|
|
|
|
return c.Cholesky(operand)
|
|
|
|
|
2018-12-17 12:52:30 -08:00
|
|
|
xla.backend_specific_translations['Host'][cholesky_p] = cholesky_cpu_translation_rule
|
2018-12-17 14:36:21 -05:00
|
|
|
|
|
|
|
|
Add Cholesky, QR, and Triangular solve implementations.
* Adds lax.{cholesky,triangular_solve,qr}. Adds a JVP for Cholesky.
* Adds a transpose rule for add_p, needed by the Cholesky JVP.
* Adds np.linalg.{cholesky,qr,dot,matmul,trace}.
* Adds scipy.linalg.{cholesky,qr,solve_triangular,tril,triu}.
Pair programmed with mattjj.
2018-12-13 13:03:08 -05:00
|
|
|
triangular_solve_dtype_rule = partial(
|
|
|
|
binop_dtype_rule, _input_dtype, (_float | _complex, _float | _complex),
|
|
|
|
'triangular_solve')
|
|
|
|
|
|
|
|
def triangular_solve_shape_rule(a, b, left_side=False, **unused_kwargs):
|
|
|
|
if a.ndim < 2:
|
|
|
|
msg = "triangular_solve requires a.ndim to be at least 2, got {}."
|
|
|
|
raise TypeError(msg.format(a.ndim))
|
|
|
|
if a.shape[-1] != a.shape[-2]:
|
|
|
|
msg = ("triangular_solve requires the last two dimensions of a to be equal "
|
|
|
|
"in size, got a.shape of {}.")
|
|
|
|
raise TypeError(msg.format(a.shape))
|
|
|
|
if a.shape[:-2] != b.shape[:-2]:
|
|
|
|
msg = ("triangular_solve requires both arguments to have the same number "
|
|
|
|
"of dimensions and equal batch dimensions, got {} and {}.")
|
|
|
|
raise TypeError(msg.format(a.shape, b.shape))
|
|
|
|
common_dim = -2 if left_side else -1
|
|
|
|
if a.shape[-1] != b.shape[common_dim]:
|
|
|
|
msg = "Incompatible shapes for arguments to triangular_solve: {} and {}."
|
|
|
|
raise TypeError(msg.format(a.shape, b.shape))
|
|
|
|
return b.shape
|
|
|
|
|
|
|
|
def triangular_solve_transpose_rule(
|
|
|
|
cotangent, a, b, left_side, lower, transpose_a, conjugate_a):
|
|
|
|
assert a is not None and b is None
|
|
|
|
cotangent_b = triangular_solve(a, cotangent, left_side, lower,
|
|
|
|
not transpose_a, conjugate_a)
|
|
|
|
return [None, cotangent_b]
|
|
|
|
|
|
|
|
triangular_solve_p = standard_primitive(
|
|
|
|
triangular_solve_shape_rule, triangular_solve_dtype_rule,
|
|
|
|
'triangular_solve')
|
|
|
|
ad.defjvp(triangular_solve_p,
|
|
|
|
None,
|
|
|
|
lambda g_b, a, b, **kwargs: triangular_solve(a, g_b, **kwargs))
|
|
|
|
ad.primitive_transposes[triangular_solve_p] = triangular_solve_transpose_rule
|
|
|
|
|
|
|
|
|
2018-12-17 16:39:19 -05:00
|
|
|
def triangular_solve_cpu_translation_rule(
|
|
|
|
c, a, b, left_side, lower, transpose_a, conjugate_a):
|
|
|
|
shape = c.GetShape(a)
|
|
|
|
if len(shape.dimensions()) == 2 and shape.element_type() == np.float32:
|
|
|
|
return lapack.jax_trsm(c, c.ConstantF32Scalar(1.0), a, b, left_side, lower,
|
|
|
|
transpose_a, conjugate_a)
|
|
|
|
elif len(shape.dimensions()) == 2 and shape.element_type() == np.float64:
|
|
|
|
return lapack.jax_trsm(c, c.ConstantF64Scalar(1.0), a, b, left_side, lower,
|
|
|
|
transpose_a, conjugate_a)
|
|
|
|
else:
|
|
|
|
# Fall back to the HLO implementation for batched triangular_solve or
|
|
|
|
# unsupported types.
|
|
|
|
# TODO(phawkins): support BLAS primitives in batched mode.
|
|
|
|
return c.TriangularSolve(a, b, left_side, lower, transpose_a, conjugate_a)
|
|
|
|
|
2018-12-17 12:52:30 -08:00
|
|
|
xla.backend_specific_translations['Host'][triangular_solve_p] = triangular_solve_cpu_translation_rule
|
2018-12-17 16:39:19 -05:00
|
|
|
|
|
|
|
|
Add Cholesky, QR, and Triangular solve implementations.
* Adds lax.{cholesky,triangular_solve,qr}. Adds a JVP for Cholesky.
* Adds a transpose rule for add_p, needed by the Cholesky JVP.
* Adds np.linalg.{cholesky,qr,dot,matmul,trace}.
* Adds scipy.linalg.{cholesky,qr,solve_triangular,tril,triu}.
Pair programmed with mattjj.
2018-12-13 13:03:08 -05:00
|
|
|
def qr_impl(operand, full_matrices):
|
|
|
|
q, r = xla.apply_primitive(qr_p, operand, full_matrices=full_matrices)
|
|
|
|
return core.pack((q, r))
|
|
|
|
|
|
|
|
def qr_translation_rule(c, operand, full_matrices):
|
|
|
|
return c.QR(operand, full_matrices=full_matrices)
|
|
|
|
|
|
|
|
def qr_abstract_eval(operand, full_matrices):
|
|
|
|
if isinstance(operand, ShapedArray):
|
|
|
|
if operand.ndim < 2:
|
|
|
|
raise ValueError("Argument to QR decomposition must have ndims >= 2")
|
|
|
|
batch_dims = operand.shape[:-2]
|
|
|
|
m = operand.shape[-2]
|
|
|
|
n = operand.shape[-1]
|
|
|
|
k = m if full_matrices else min(m, n)
|
|
|
|
q = ShapedArray(batch_dims + (m, k), operand.dtype)
|
|
|
|
r = ShapedArray(batch_dims + (k, n), operand.dtype)
|
|
|
|
else:
|
|
|
|
q = operand
|
|
|
|
r = operand
|
|
|
|
return core.AbstractTuple((q, r))
|
|
|
|
|
|
|
|
def qr_dtype_rule(operand, full_matrices=True):
|
|
|
|
return operand.dtype
|
|
|
|
|
|
|
|
qr_p = Primitive('qr')
|
|
|
|
qr_p.def_impl(qr_impl)
|
|
|
|
qr_p.def_abstract_eval(qr_abstract_eval)
|
|
|
|
xla.translations[qr_p] = qr_translation_rule
|