rocm_jax/jax/_src/dispatch.py

1283 lines
51 KiB
Python
Raw Normal View History

# Copyright 2018 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Primitive dispatch and jit dispatch.
from __future__ import annotations
import atexit
import collections
2021-12-13 21:51:08 -08:00
import contextlib
from functools import partial
import itertools
2021-12-13 21:51:08 -08:00
import time
from typing import (
Any, Callable, Dict, Optional, Sequence, Set, Tuple, List, Type, Union,
TYPE_CHECKING)
from typing_extensions import Protocol
import os
import re
import threading
import warnings
from absl import logging
import numpy as np
import jax
from jax import core
from jax import linear_util as lu
from jax.errors import UnexpectedTracerError
import jax.interpreters.ad as ad
import jax.interpreters.batching as batching
import jax.interpreters.mlir as mlir
import jax.interpreters.xla as xla
import jax.interpreters.partial_eval as pe
from jax._src import device_array
from jax._src import dtypes
from jax._src import profiler
from jax._src import stages
from jax._src import traceback_util
from jax._src.abstract_arrays import array_types
from jax._src.config import config, flags
from jax._src.lib.mlir import ir
from jax._src.lib import can_execute_with_token
from jax._src.lib import xla_bridge as xb
from jax._src.lib import xla_client as xc
import jax._src.util as util
from jax._src.util import flatten, unflatten
from etils import epath
if TYPE_CHECKING:
from jax.experimental.array import Array
FLAGS = flags.FLAGS
flags.DEFINE_string(
'jax_dump_ir_to', os.getenv('JAX_DUMP_IR_TO', ''),
help="Path to which HLO/MHLO IR that is emitted by JAX as input to the "
"compiler should be dumped as text files. Optional. If omitted, JAX "
"will not dump IR.")
traceback_util.register_exclusion(__file__)
MYPY = False # Are we currently type checking with mypy?
xe = xc._xla
Backend = xe.Client
Device = xc.Device
Buffer = xe.Buffer
XlaExecutable = xc.Executable
map, unsafe_map = util.safe_map, map
zip, unsafe_zip = util.safe_zip, zip
# This flag is set on exit; no logging should be attempted
_on_exit = False
### op-by-op execution
ArgSpec = Tuple[core.AbstractValue, Optional[Device]]
def arg_spec(x: Any) -> ArgSpec:
from jax.experimental.sharding import PmapSharding
aval = xla.abstractify(x)
try:
if config.jax_array:
if isinstance(x.sharding, PmapSharding):
return aval, None
return aval, (x.sharding if x._committed else None)
else:
return aval, x._device
except:
return aval, None
def apply_primitive(prim, *args, **params):
"""Impl rule that compiles and runs a single primitive 'prim' using XLA."""
compiled_fun = xla_primitive_callable(prim, *unsafe_map(arg_spec, args),
**params)
return compiled_fun(*args)
# TODO(phawkins,frostig,mattjj): update code referring to
# xla.apply_primitive to point here, or use simple_impl if that's why
# it is using apply_primitive to begin with
xla.apply_primitive = apply_primitive
def simple_impl(prim):
prim.def_impl(partial(apply_primitive, prim))
RuntimeToken = Any
class RuntimeTokenSet(threading.local):
tokens: Dict[core.Effect, Tuple[RuntimeToken, Device]]
output_tokens: Dict[Device, RuntimeToken]
output_runtime_tokens: Dict[Device, RuntimeToken]
def __init__(self):
self.tokens = {}
# TODO(sharadmv): remove redundant output token dictionary when minimum
# jaxlib version is bumped to 0.3.16.
self.output_tokens = {}
self.output_runtime_tokens = {}
def get_token(self, eff: core.Effect, device: Device) -> RuntimeToken:
if eff not in self.tokens:
self.tokens[eff] = device_put(np.zeros(0, np.bool_), device), device
elif self.tokens[eff][1] != device:
(old_token,), _ = self.tokens[eff]
old_token.aval = core.ShapedArray((0,), np.bool_)
self.tokens[eff] = device_put(old_token, device), device
return self.tokens[eff][0]
def update_token(self, eff: core.Effect, token: RuntimeToken):
self.tokens[eff] = token, self.tokens[eff][1]
def set_output_token(self, device: Device, token: RuntimeToken):
# We're free to clobber the previous output token because on each
# device we have a total ordering of computations. Only the token
# from the latest computation matters. If this weren't the case
# we'd need to store a set of output tokens.
self.output_tokens[device] = token
def set_output_runtime_token(self, device: Device, token: RuntimeToken):
# TODO(sharadmv): remove this method when minimum jaxlib version is bumped
self.output_runtime_tokens[device] = token
def clear(self):
self.tokens = {}
self.output_tokens = {}
self.output_runtime_tokens = {}
def block_until_ready(self):
for token, _ in self.tokens.values():
token[0].block_until_ready()
for token in self.output_tokens.values():
token[0].block_until_ready()
for token in self.output_runtime_tokens.values():
token.block_until_ready()
self.clear()
runtime_tokens: RuntimeTokenSet = RuntimeTokenSet()
@atexit.register
def wait_for_tokens():
runtime_tokens.block_until_ready()
@util.cache()
def xla_primitive_callable(prim, *arg_specs: ArgSpec, **params):
_, arg_devices = util.unzip2(arg_specs)
donated_invars = (False,) * len(arg_specs)
if config.jax_array:
# This will be resolved in sharded_lowering.
device = None
else:
device = _device_from_arg_devices(arg_devices)
def prim_fun(*args):
out = prim.bind(*args, **params)
if prim.multiple_results:
return out
else:
return out,
compiled = _xla_callable_uncached(lu.wrap_init(prim_fun), device, None,
prim.name, donated_invars, False, *arg_specs)
if not prim.multiple_results:
return lambda *args, **kw: compiled(*args, **kw)[0]
else:
return compiled
def _device_from_arg_devices(devices: Sequence[Optional[Device]]) -> Optional[Device]:
"""Given devices of inputs, determine where to perform a computation.
Args:
devices: list where each element is a either a `Device` instance or `None`.
Returns:
A `Device` instance or None.
Raises:
ValueError if input devices are inconsistent.
"""
try:
device, = {d for d in devices if d is not None} or (None,)
return device
except ValueError as err:
msg = "primitive arguments must be colocated on the same device, got {}"
raise ValueError(msg.format(", ".join(map(str, devices)))) from err
# JIT execution
def _xla_call_impl(fun: lu.WrappedFun, *args, device, backend, name,
donated_invars, inline, keep_unused: bool):
del inline # Only used at tracing time
2022-06-29 13:55:30 -07:00
if fun.in_type is None:
arg_specs = unsafe_map(arg_spec, args)
else:
# fun.in_type is used for dynamic shapes.
if config.jax_array:
raise NotImplementedError('Dynamic shapes do not work with Array.')
2022-06-29 13:55:30 -07:00
arg_specs = [(None, getattr(x, '_device', None)) for x in args]
compiled_fun = xla_callable(fun, device, backend, name, donated_invars,
keep_unused, *arg_specs)
try:
return compiled_fun(*args)
except FloatingPointError:
assert config.jax_debug_nans or config.jax_debug_infs # compiled_fun can only raise in this case
print("Invalid value encountered in the output of a jit-decorated function. "
"Calling the de-optimized version.")
# We want to run the wrapped function again (after xla_callable already ran
# it), but linear_util.WrappedFun instances are meant to be run only once.
# In addition to re-executing the Python code, which is usually undesirable
# but which config.jax_debug_nans is meant to opt into, we'll be
# re-executing any linear_util.py-style side effects, i.e. re-populating
# Stores created by any transformation_with_aux's applied to fun. Since this
# is intentional here, to avoid "Store occupied" errors we clone the
# WrappedFun with empty stores.
stores = [lu.Store() for _ in fun.stores]
clone = lu.WrappedFun(fun.f, fun.transforms, stores, fun.params,
fun.in_type)
with core.new_sublevel():
_ = clone.call_wrapped(*args) # may raise, not return
# If control reaches this line, we got a NaN on the output of `compiled_fun`
# but not `clone.call_wrapped` on the same arguments. Let's tell the user.
fun_info = pe.fun_sourceinfo(fun.f)
msg = ("An invalid value was encountered in the output of the "
f"`jit`-decorated function {fun_info}. Because "
"config.jax_debug_nans and/or config.jax_debug_infs is set, the "
"de-optimized function (i.e., the function as if the `jit` "
"decorator were removed) was called in an attempt to get a more "
"precise error message. However, the de-optimized function did not "
"produce invalid values during its execution. This behavior can "
"result from `jit` optimizations causing the invalud value to be "
"produced. It may also arise from having nan/inf constants as "
"outputs, like `jax.jit(lambda ...: jax.numpy.nan)(...)`. "
"\n\n"
"It may be possible to avoid the invalid value by removing the "
"`jit` decorator, at the cost of losing optimizations. "
"\n\n"
"If you see this error, consider opening a bug report at "
"https://github.com/google/jax.")
raise FloatingPointError(msg)
xla.xla_call_p.def_impl(_xla_call_impl)
# TODO(yashkatariya,mattjj): Try to handle this in api.py via a device_put and
# don't pass the device and backend argument to `_xla_callable_uncached`.
def not_none_device_or_backend_on_jit(backend, device, num_ins):
"""This is to support the backend and device argument on jit. It's a feature
that's deprecated but needs to be supported for feature parity and so that we
can delete the non-Array paths when Array is switched on.
"""
# TODO(yashkatariya): Remove this entire function when backend and device are
# removed as arguments on jit.
from jax.experimental import sharding
if device is not None and backend is not None:
raise ValueError("can't specify both a device and a backend for jit, "
"got device={} and backend={}".format(device, backend))
if backend is not None:
da = [xb.get_backend(backend).get_default_device_assignment(1)[0]]
else:
assert device is not None
da = [device]
assert len(da) == 1
# Set committed to True for this path because it simulates a device_put on
# behalf of a user.
committed = True
# in_shardings will be marked as replicated regardless of whatever the input
# had. Given that only a single device is allowed above, this is correct.
in_shardings = [sharding.OpShardingSharding.get_replicated(da)] * num_ins
return committed, da, in_shardings
def sharded_lowering(fun, device, backend, name, donated_invars, always_lower,
keep_unused, *arg_specs):
# TODO(yashkatariya): Remove the local imports from here when the functions
# in pxla.py move to dispatch.py or a utils file.
from jax.interpreters import pxla
from jax.experimental import pjit, sharding
in_avals, in_shardings = util.unzip2(arg_specs)
if backend is not None or device is not None:
committed, da, in_shardings = not_none_device_or_backend_on_jit(
backend, device, len(in_shardings))
else:
committed = any(i is not None for i in in_shardings)
da = pjit._get_and_check_device_assignment(
(i for i in in_shardings if i is not None), pxla.EMPTY_ENV.physical_mesh)
in_shardings = [sharding.OpShardingSharding.get_replicated(da) if i is None else i
for i in in_shardings]
process_index = xb.process_index()
local_da = [d for d in da if d.process_index == process_index]
if len(local_da) != len(da):
warnings.warn(
"Running operations on `Array`s that are not fully addressable by this "
"process (i.e. `Array`s with data sharded across multiple devices and "
"processes.) is dangerous. Its very important that all processes run "
"the same cross-process computations in the same order otherwise it "
"can lead to hangs.\n"
"If youre not already familiar with JAXs multi-process "
"programming model, please read "
"https://jax.readthedocs.io/en/latest/multi_process.html.")
if not in_shardings:
inp_device_assignment = da
else:
inp_device_assignment = None
# Pass in a singleton `_UNSPECIFIED` for out_shardings because we don't know
# the number of output avals at this stage. lower_sharding_computation will
# apply it to all out_avals.
return pxla.lower_sharding_computation(
fun, 'jit', name, in_shardings, pjit._UNSPECIFIED,
donated_invars, in_avals,
in_is_global=(True,) * len(arg_specs), keep_unused=keep_unused,
committed=committed, always_lower=always_lower,
inp_device_assignment=inp_device_assignment)
def _xla_callable_uncached(fun: lu.WrappedFun, device, backend, name,
donated_invars, keep_unused, *arg_specs):
if config.jax_array:
computation = sharded_lowering(fun, device, backend, name, donated_invars,
False, keep_unused, *arg_specs)
return computation.compile(_allow_propagation_to_outputs=True).unsafe_call
else:
return lower_xla_callable(fun, device, backend, name, donated_invars, False,
keep_unused, *arg_specs).compile().unsafe_call
xla_callable = lu.cache(_xla_callable_uncached)
def is_single_device_sharding(sharding) -> bool:
from jax.experimental.sharding import PmapSharding
# Special case PmapSharding here because PmapSharding maps away an axis
# and needs to be handled separately.
return len(sharding.device_set) == 1 and not isinstance(sharding, PmapSharding)
2021-12-13 21:51:08 -08:00
@contextlib.contextmanager
def log_elapsed_time(fmt: str):
if _on_exit:
yield
else:
log_priority = logging.WARNING if config.jax_log_compiles else logging.DEBUG
start_time = time.time()
yield
elapsed_time = time.time() - start_time
logging.log(log_priority, fmt.format(elapsed_time=elapsed_time))
def should_tuple_args(num_args: int, platform: str):
# CPU does not need a tuple as it uses a buffer table
# TPU only needs a tuple for very long lists
if platform == "cpu":
return False
elif platform == "tpu":
return num_args > 2000
else:
return num_args > 100
def raise_warnings_or_errors_for_jit_of_pmap(nreps, backend, name, jaxpr):
if nreps > 1:
warnings.warn(
f"The jitted function {name} includes a pmap. Using "
"jit-of-pmap can lead to inefficient data movement, as the outer jit "
"does not preserve sharded data representations and instead collects "
"input and output arrays onto a single device. "
"Consider removing the outer jit unless you know what you're doing. "
"See https://github.com/google/jax/issues/2926.")
if nreps > xb.device_count(backend):
raise ValueError(
f"compiling computation `{name}` that requires {nreps} replicas, but "
f"only {xb.device_count(backend)} XLA devices are available.")
if xb.process_count() > 1 and (nreps > 1 or
jaxpr_has_primitive(jaxpr, "xla_pmap")):
raise NotImplementedError(
"jit of multi-host pmap not implemented (and jit-of-pmap can cause "
"extra data movement anyway, so maybe you don't want it after all).")
@profiler.annotate_function
def lower_xla_callable(
fun: lu.WrappedFun, device, backend, name, donated_invars,
always_lower: bool, keep_unused: bool, *arg_specs):
"""Lower into XLA.
Args:
always_lower: If `True`, even trivial programs (not doing any computation
such as lambda x: x) will be lowered into an XLA program.
keep_unused: If `False` (the default), arguments that JAX determines to be
unused by `fun` *may* be dropped from resulting compiled XLA executables.
Such arguments will not be transferred to the device nor provided to the
underlying executable. If `True`, unused arguments will not be pruned.
"""
if device is not None and backend is not None:
raise ValueError("can't specify both a device and a backend for jit, "
"got device={} and backend={}".format(device, backend))
abstract_args, arg_devices = util.unzip2(arg_specs)
if fun.in_type is None:
# Add an annotation inferred from the arguments; no dynamic axes here.
in_type = tuple(unsafe_zip(abstract_args, itertools.repeat(True)))
fun = lu.annotate(fun, in_type)
else:
2022-06-29 13:55:30 -07:00
assert abstract_args == (None,) * len(abstract_args)
abstract_args = [aval for aval, _ in fun.in_type]
with log_elapsed_time(f"Finished tracing + transforming {fun.__name__} "
"for jit in {elapsed_time} sec"):
jaxpr, out_type, consts = pe.trace_to_jaxpr_final2(
fun, pe.debug_info_final(fun, "jit"))
out_avals, kept_outputs = util.unzip2(out_type)
if any(isinstance(c, core.Tracer) for c in consts):
raise UnexpectedTracerError("Encountered an unexpected tracer.")
if config.jax_dynamic_shapes:
keep_unused = True
has_outfeed = False
donated_invars = [False] * len(fun.in_type)
else:
has_outfeed = core.jaxpr_uses_outfeed(jaxpr)
jaxpr = apply_outfeed_rewriter(jaxpr)
if not keep_unused:
jaxpr, kept_const_idx, kept_var_idx = _prune_unused_inputs(jaxpr)
consts = [c for i, c in enumerate(consts) if i in kept_const_idx]
abstract_args, arg_devices = util.unzip2(
[a for i, a in enumerate(arg_specs) if i in kept_var_idx])
donated_invars = [x for i, x in enumerate(donated_invars)
if i in kept_var_idx]
del kept_const_idx
else:
2022-06-29 13:55:30 -07:00
kept_var_idx = set(range(len(fun.in_type)))
nreps = jaxpr_replicas(jaxpr)
device = _xla_callable_device(nreps, backend, device, arg_devices)
backend = xb.get_device_backend(device) if device else xb.get_backend(backend)
if config.jax_dynamic_shapes and jaxpr_has_bints(jaxpr):
jaxpr, consts = pe.pad_jaxpr(jaxpr, consts)
map(prefetch, itertools.chain(consts, jaxpr_literals(jaxpr)))
# Computations that only produce constants and/or only rearrange their inputs,
# which are often produced from partial evaluation, don't need compilation,
# and don't need to evaluate their arguments.
if (not always_lower and not (jaxpr.effects or has_outfeed) and
(not jaxpr.eqns and all(kept_outputs) or not jaxpr.outvars)):
return XlaComputation(
name, None, True, None, None, None, jaxpr=jaxpr, consts=consts,
device=device, in_avals=abstract_args, out_avals=out_avals,
has_unordered_effects=False, ordered_effects=[],
kept_var_idx=kept_var_idx, keepalive=None, host_callbacks=[])
if not _on_exit:
log_priority = logging.WARNING if config.jax_log_compiles else logging.DEBUG
2021-12-13 21:51:08 -08:00
if len(abstract_args) > 10:
msg = f"Compiling {fun.__name__} ({id(fun)}) for {len(abstract_args)} args."
else:
msg = f"Compiling {fun.__name__} ({id(fun)} for args {abstract_args}."
logging.log(log_priority, msg)
raise_warnings_or_errors_for_jit_of_pmap(nreps, backend, name, jaxpr)
# pass long arg lists as tuple for TPU
tuple_args = should_tuple_args(len(abstract_args), backend.platform)
axis_env = xla.AxisEnv(nreps, (), ())
2022-04-14 15:22:58 -07:00
name_stack = util.new_name_stack(util.wrap_name(name, 'jit'))
closed_jaxpr = core.ClosedJaxpr(jaxpr, consts)
module_name = f"jit_{fun.__name__}"
unordered_effects = [eff for eff in closed_jaxpr.effects
if eff not in core.ordered_effects]
ordered_effects = [eff for eff in closed_jaxpr.effects
if eff in core.ordered_effects]
lowering_result = mlir.lower_jaxpr_to_module(
module_name, closed_jaxpr, unordered_effects,
ordered_effects, backend, backend.platform,
mlir.ReplicaAxisContext(axis_env), name_stack, donated_invars)
module, keepalive, host_callbacks = (
lowering_result.module, lowering_result.keepalive,
lowering_result.host_callbacks)
return XlaComputation(
name, module, False, donated_invars, fun.in_type, out_type, nreps=nreps,
device=device, backend=backend, tuple_args=tuple_args,
in_avals=abstract_args, out_avals=out_avals,
has_unordered_effects=bool(unordered_effects),
ordered_effects=ordered_effects, kept_var_idx=kept_var_idx,
keepalive=keepalive, host_callbacks=host_callbacks)
def _backend_supports_unbounded_dynamic_shapes(backend: Backend) -> bool:
return backend.platform == 'iree'
def prefetch(x):
if isinstance(x, device_array.DeviceArray):
x.copy_to_host_async()
return x
def jaxpr_literals(jaxpr):
"""Generates all the literals inside a jaxpr, including nested subjaxprs."""
for eqn in jaxpr.eqns:
for v in eqn.invars:
if type(v) is core.Literal:
yield v.val
for subjaxpr in core.subjaxprs(jaxpr):
yield from jaxpr_literals(subjaxpr)
def jaxpr_has_primitive(jaxpr, prim_name: str):
"""Whether there is a primitive given by user anywhere inside a Jaxpr."""
for eqn in jaxpr.eqns:
if prim_name in eqn.primitive.name:
return True
for subjaxpr in core.subjaxprs(jaxpr):
if jaxpr_has_primitive(subjaxpr, prim_name):
return True
return False
def jaxpr_has_bints(jaxpr: core.Jaxpr) -> bool:
2022-06-29 13:55:30 -07:00
return (any(type(v.aval) is core.AbstractBInt for v in jaxpr.invars) or
any(type(v.aval) is core.AbstractBInt
for j in itertools.chain([jaxpr], core.subjaxprs(jaxpr))
2022-06-29 13:55:30 -07:00
for e in j.eqns for v in e.outvars))
def _prune_unused_inputs(
jaxpr: core.Jaxpr) -> Tuple[core.Jaxpr, Set[int], Set[int]]:
used_outputs = [True] * len(jaxpr.outvars)
new_jaxpr, used_consts, used_inputs = pe.dce_jaxpr_consts(jaxpr, used_outputs)
kept_const_idx = {i for i, b in enumerate(used_consts) if b}
kept_var_idx = {i for i, b in enumerate(used_inputs) if b}
return new_jaxpr, kept_const_idx, kept_var_idx
# We can optionally set a Jaxpr rewriter that can be applied just before
# compilation. This mechanism is used for compiling id_tap, we can
# remove it once we bring the id_tap implementation into the core.
outfeed_rewriter: Optional[Callable[[core.Jaxpr], core.Jaxpr]] = None
def apply_outfeed_rewriter(jaxpr: core.Jaxpr) -> core.Jaxpr:
if outfeed_rewriter is not None:
return outfeed_rewriter(jaxpr)
else:
return jaxpr
def jaxpr_replicas(jaxpr) -> int:
"""The number of replicas needed for a jaxpr.
For a eqn, multiply the `axis_size` with the `jaxpr_replicas` of the
subjaxprs. For a list of eqns, take the maximum number of replicas.
"""
if isinstance(jaxpr, core.ClosedJaxpr):
jaxpr = jaxpr.jaxpr
return max(unsafe_map(eqn_replicas, jaxpr.eqns), default=1)
# TODO(mattjj): this function assumes that only pmap has a parameter named
# axis_size, and that it corresponds to cross-replica mapping
def eqn_replicas(eqn):
call_jaxpr = eqn.params.get("call_jaxpr")
if call_jaxpr:
return eqn.params.get('axis_size', 1) * jaxpr_replicas(call_jaxpr)
elif eqn.primitive in xla._initial_style_primitives:
return initial_style_primitive_replicas(eqn.params)
else:
return 1
def initial_style_primitive_replicas(params):
return max(core.traverse_jaxpr_params(jaxpr_replicas, params).values(), default=1)
def _xla_callable_device(nreps, backend, device,
arg_devices) -> Optional[Device]:
if nreps > 1:
if device is not None or backend is not None:
raise ValueError(f"can't specify device or backend for jit-of-pmap, "
f"got device={device} and backend={backend}")
return None
else:
# TODO(skye): dedup with C++ jit logic for determining jit device?
if device is not None:
assert backend is None
return device
if backend is not None:
return xb.get_backend(backend).get_default_device_assignment(1)[0]
arg_device = _device_from_arg_devices(arg_devices)
if arg_device is not None:
return arg_device
return config.jax_default_device
# Argument and result handlers
num_buffers_handlers: Dict[Type[core.AbstractValue],
Callable[[core.AbstractValue], int]] = {}
def aval_to_num_buffers(aval: core.AbstractValue) -> int:
"""Returns the number of buffers in the runtime representation of `aval`.
In general this may differ from the number of buffers in the compiler-IR
representation of the same value.
"""
try:
return num_buffers_handlers[type(aval)](aval)
except KeyError as err:
raise TypeError(f"No num_buffers handler for type: {type(aval)}") from err
num_buffers_handlers[core.AbstractToken] = lambda _: 1
num_buffers_handlers[core.ShapedArray] = lambda _: 1
num_buffers_handlers[core.DShapedArray] = lambda _: 1
num_buffers_handlers[core.ConcreteArray] = lambda _: 1
num_buffers_handlers[core.AbstractBInt] = lambda _: 1
def _input_handler(backend: Backend,
in_type: Optional[pe.InputType],
out_type: Optional[pe.OutputType],
) -> Optional[Callable]:
if in_type is None:
assert out_type is None
return None
in_avals, which_explicit = util.unzip2(in_type)
# Check whether we actually need an input_handler.
needs_implicit = which_explicit and not all(which_explicit)
2022-06-29 13:55:30 -07:00
needs_out_handling = any(type(d) is core.InDBIdx for a, _ in out_type or []
if type(a) is core.DShapedArray for d in a.shape)
if not needs_implicit and not needs_out_handling:
return None
assert config.jax_dynamic_shapes
# Precompute how to grab implicit inputs from explicit inputs' axis sizes.
which_explicit = which_explicit or [True] * len(in_avals)
implicit_idxs = {i for i, ex in enumerate(which_explicit) if not ex}
implicit_args_from_axes: List[Tuple[int, int, int]] = []
for arg_idx, aval in enumerate(in_avals):
if isinstance(aval, core.DShapedArray):
for axis_idx, d in enumerate(aval.shape):
if isinstance(d, core.DBIdx) and d.val in implicit_idxs:
implicit_args_from_axes.append((d.val, arg_idx, axis_idx))
assert {i for i, _, _ in implicit_args_from_axes} == implicit_idxs
# Precompute which input values are needed for output types.
inputs_needed_for_out_types = out_type and [
2022-06-29 13:55:30 -07:00
d.val for aval, _ in out_type if type(aval) is core.DShapedArray # type: ignore
for d in aval.shape if type(d) is core.InDBIdx]
def elaborate(explicit_args: Sequence[Any]) -> Tuple[Tuple, Optional[Tuple]]:
if needs_implicit:
# Build full argument list, leaving Nones for implicit arguments.
explicit_args_ = iter(explicit_args)
args = [next(explicit_args_) if ex else None for ex in which_explicit]
assert next(explicit_args_, None) is None
# Populate implicit arguments.
for i, j, k in implicit_args_from_axes:
if args[i] is None:
args[i] = args[j].shape[k] # type: ignore
else:
if args[i] != args[j].shape[k]:
raise Exception("inconsistent argument axis sizes for type")
else:
args = list(explicit_args)
if needs_out_handling:
# Make a list of inputs needed by output types, leaving unneeded as None.
out_type_env = [None] * len(args)
for i in inputs_needed_for_out_types or []:
out_type_env[i] = args[i]
else:
out_type_env = None # type: ignore
return tuple(args), out_type_env and tuple(out_type_env) # type: ignore
return elaborate
def _result_handler(backend: Backend,
sticky_device: Optional[Device],
out_type: Optional[pe.OutputType]
) -> Callable:
out_avals, kept_outputs = util.unzip2(out_type)
handlers = map(partial(aval_to_result_handler, sticky_device), out_avals)
dyn_outs = any(type(aval) is core.DShapedArray and
any(type(d) in (core.InDBIdx, core.OutDBIdx) for d in aval.shape)
for aval in out_avals)
if not dyn_outs:
return SimpleResultHandler(handlers)
assert config.jax_dynamic_shapes
def result_handler(input_env, lists_of_bufs):
results = []
for handler, bufs in unsafe_zip(handlers, lists_of_bufs):
results.append(handler((input_env, results), *bufs))
return [r for r, keep in unsafe_zip(results, kept_outputs) if keep]
return result_handler
class SimpleResultHandler:
handlers: Sequence[ResultHandler]
def __init__(self, handlers): self.handlers = handlers
def __iter__(self): return iter(self.handlers)
def __len__(self): return len(self.handlers)
def __call__(self, env, lists_of_bufs):
return tuple(h(env, *bs) for h, bs in zip(self.handlers, lists_of_bufs))
def maybe_create_array_from_da(buf, aval, device):
if config.jax_array:
from jax.experimental.array import Array
from jax.experimental.sharding import SingleDeviceSharding
return Array(aval, SingleDeviceSharding(buf.device()), [buf],
committed=(device is not None), _skip_checks=True)
else:
return device_array.make_device_array(aval, device, buf)
if MYPY:
ResultHandler = Any
else:
class ResultHandler(Protocol):
def __call__(self, env: Optional[Sequence[Any]], *args: xla.Buffer) -> Any:
"""Boxes raw buffers into their user-facing representation."""
def aval_to_result_handler(sticky_device: Optional[Device],
aval: core.AbstractValue) -> ResultHandler:
try:
return result_handlers[type(aval)](sticky_device, aval)
except KeyError as err:
raise TypeError(f"No result handler for type: {type(aval)}") from err
def array_result_handler(sticky_device: Optional[Device],
aval: core.ShapedArray):
if aval.dtype == dtypes.float0:
return lambda _, __: np.zeros(aval.shape, dtypes.float0)
aval = core.raise_to_shaped(aval)
if core.is_opaque_dtype(aval.dtype):
return aval.dtype._rules.result_handler(sticky_device, aval)
handler = lambda _, b: maybe_create_array_from_da(b, aval, sticky_device)
handler.args = aval, sticky_device # for C++ dispatch path in api.py
return handler
def dynamic_array_result_handler(sticky_device: Optional[Device],
aval: core.DShapedArray):
if aval.dtype == dtypes.float0:
return lambda _: np.zeros(aval.shape, dtypes.float0) # type: ignore
else:
return partial(_dynamic_array_result_handler, sticky_device, aval)
def _dynamic_array_result_handler(sticky_device, aval, env, buf):
in_env, out_env = env or (None, None)
shape = [in_env[d.val] if type(d) is core.InDBIdx else
out_env[d.val] if type(d) is core.OutDBIdx else d
for d in aval.shape]
if all(type(d) is int for d in shape):
aval = core.ShapedArray(tuple(shape), aval.dtype)
return maybe_create_array_from_da(buf, aval, sticky_device)
elif any(type(d) is core.BInt for d in shape):
padded_shape = [d.bound if type(d) is core.BInt else d for d in shape]
buf_aval = core.ShapedArray(tuple(padded_shape), aval.dtype, aval.weak_type)
data = maybe_create_array_from_da(buf, buf_aval, sticky_device)
return core.PaddedArray(aval.update(shape=tuple(shape)), data)
else:
aval = core.ShapedArray(tuple(shape), aval.dtype)
return maybe_create_array_from_da(buf, aval, sticky_device)
result_handlers: Dict[
Type[core.AbstractValue],
Callable[[Optional[Device], Any], ResultHandler]] = {}
result_handlers[core.AbstractToken] = lambda _, __: lambda _, __: core.token
result_handlers[core.ShapedArray] = array_result_handler
result_handlers[core.DShapedArray] = dynamic_array_result_handler
result_handlers[core.ConcreteArray] = array_result_handler
result_handlers[core.AbstractBInt] = \
lambda _, a: lambda _, b: core.BInt(int(b), a.bound)
def needs_check_special():
return config.jax_debug_infs or config.jax_debug_nans
def check_special(name, bufs):
if needs_check_special():
for buf in bufs:
_check_special(name, buf.xla_shape(), buf)
def _check_special(name, xla_shape, buf):
assert not xla_shape.is_tuple()
if dtypes.issubdtype(xla_shape.element_type(), np.inexact):
if config.jax_debug_nans and np.any(np.isnan(np.asarray(buf))):
raise FloatingPointError(f"invalid value (nan) encountered in {name}")
if config.jax_debug_infs and np.any(np.isinf(np.asarray(buf))):
raise FloatingPointError(f"invalid value (inf) encountered in {name}")
def _add_tokens(has_unordered_effects: bool, ordered_effects: List[core.Effect],
has_host_callbacks: bool, device: Device, input_bufs):
tokens = [runtime_tokens.get_token(eff, device) for eff in ordered_effects]
tokens_flat = flatten(tokens)
input_bufs = [*tokens_flat, *input_bufs]
def _remove_tokens(output_bufs, runtime_token):
# TODO(sharadmv): simplify when minimum jaxlib version is bumped
num_output_tokens = len(ordered_effects) + (not can_execute_with_token and
has_unordered_effects)
token_bufs, output_bufs = util.split_list(output_bufs, [num_output_tokens])
if has_unordered_effects or has_host_callbacks:
if can_execute_with_token:
runtime_tokens.set_output_runtime_token(device, runtime_token)
else:
output_token_buf, *token_bufs = token_bufs
runtime_tokens.set_output_token(device, output_token_buf)
for eff, token_buf in zip(ordered_effects, token_bufs):
runtime_tokens.update_token(eff, token_buf)
return output_bufs
return input_bufs, _remove_tokens
def _execute_compiled(name: str, compiled: XlaExecutable,
input_handler: Optional[Callable],
output_buffer_counts: Sequence[int],
result_handler: Callable,
has_unordered_effects: bool,
ordered_effects: List[core.Effect],
kept_var_idx, has_host_callbacks: bool, *args):
device, = compiled.local_devices()
args, env = input_handler(args) if input_handler else (args, None)
in_flat = flatten(device_put(x, device) for i, x in enumerate(args)
if i in kept_var_idx)
if has_unordered_effects or ordered_effects or has_host_callbacks:
in_flat, token_handler = _add_tokens(
has_unordered_effects, ordered_effects, has_host_callbacks, device,
in_flat)
if can_execute_with_token:
out_flat, runtime_token = compiled.execute_with_token(in_flat)
else:
out_flat = compiled.execute(in_flat)
runtime_token = None
else:
out_flat = compiled.execute(in_flat)
check_special(name, out_flat)
out_bufs = unflatten(out_flat, output_buffer_counts)
if ordered_effects or has_unordered_effects or has_host_callbacks:
out_bufs = token_handler(out_bufs, runtime_token)
return result_handler(env, out_bufs)
def _execute_replicated(name: str, compiled: XlaExecutable,
input_handler: Optional[Callable],
output_buffer_counts: Sequence[int],
result_handler: Callable,
has_unordered_effects: bool,
ordered_effects: List[core.Effect],
kept_var_idx, has_host_callbacks: bool,
*args, from_lower_sharding_computation: bool = False):
if has_unordered_effects or ordered_effects:
# TODO(sharadmv): support jit-of-pmap with effects
raise NotImplementedError(
"Cannot execute replicated computation with effects.")
if input_handler: raise NotImplementedError # TODO(mattjj, dougalm)
input_bufs = [flatten(device_put(x, device) for i, x in enumerate(args)
if i in kept_var_idx)
for device in compiled.local_devices()]
input_bufs_flip = list(unsafe_zip(*input_bufs))
out_bufs_flat_rep = compiled.execute_sharded_on_local_devices(input_bufs_flip)
out_flat = [bufs[0] for bufs in out_bufs_flat_rep]
check_special(name, out_flat)
out_bufs = unflatten(out_flat, output_buffer_counts)
if from_lower_sharding_computation:
return result_handler(out_bufs)
return result_handler(None, out_bufs)
def _execute_trivial(jaxpr, device: Optional[Device], consts, avals, handlers,
has_unordered_effects: bool,
ordered_effects: List[core.Effect], kept_var_idx,
host_callbacks, *args):
2022-05-02 17:11:44 -07:00
env: Dict[core.Var, Any] = {}
pruned_args = (x for i, x in enumerate(args) if i in kept_var_idx)
map(env.setdefault, jaxpr.invars, pruned_args)
map(env.setdefault, jaxpr.constvars, consts)
outs = [xla.canonicalize_dtype(v.val) if type(v) is core.Literal else env[v]
for v in jaxpr.outvars]
return [_copy_device_array_to_device(x, device) if device_array.type_is_device_array(x)
else h(None, *device_put(x, device)) for h, x in zip(handlers, outs)]
class XlaComputation(stages.XlaLowering):
name: str
_is_trivial: bool
_executable: Optional[XlaCompiledComputation]
_donated_invars: Optional[Sequence[bool]]
def __init__(self, name: str, hlo, is_trivial: bool,
donated_invars: Optional[Sequence[bool]],
in_type: Optional[pe.InputType],
out_type: Optional[pe.OutputType],
**compile_args):
self.name = name
self._hlo = hlo
self._is_trivial = is_trivial
self._donated_invars = donated_invars
self._in_type = in_type
self._out_type = out_type
self._executable = None
self.compile_args = compile_args
def is_trivial(self):
return self._is_trivial
# -- stages.XlaLowering overrides
def hlo(self) -> xc.XlaComputation:
if self.is_trivial():
raise ValueError("A trivial computation has no HLO")
if isinstance(self._hlo, xc.XlaComputation):
return self._hlo
return xe.mlir.mlir_module_to_xla_computation(
mlir.module_to_string(self._hlo),
use_tuple_args=self.compile_args["tuple_args"])
def mhlo(self) -> ir.Module:
if self.is_trivial():
raise ValueError("A trivial computation has no MHLO")
if isinstance(self._hlo, xc.XlaComputation):
module_str = xe.mlir.xla_computation_to_mlir_module(self._hlo)
with mlir.make_ir_context():
return ir.Module.parse(module_str)
return self._hlo
def compile(self) -> XlaCompiledComputation:
if self._executable is None:
if self.is_trivial():
self._executable = XlaCompiledComputation.from_trivial_jaxpr(
**self.compile_args)
else:
self._executable = XlaCompiledComputation.from_xla_computation(
self.name, self._hlo, self._in_type, self._out_type,
**self.compile_args)
return self._executable
@profiler.annotate_function
def backend_compile(backend, built_c, options, host_callbacks):
# we use a separate function call to ensure that XLA compilation appears
# separately in Python profiling results
if host_callbacks:
return backend.compile(built_c, compile_options=options,
host_callbacks=host_callbacks)
# Some backends don't have `host_callbacks` option yet
# TODO(sharadmv): remove this fallback when all backends allow `compile`
# to take in `host_callbacks`
return backend.compile(built_c, compile_options=options)
# TODO(phawkins): update users.
xla.backend_compile = backend_compile
_ir_dump_counter = itertools.count()
def _make_string_safe_for_filename(s: str) -> str:
return re.sub(r'[^\w.)( -]', '', s)
def _dump_ir_to_file(name: str, ir: str):
id = next(_ir_dump_counter)
name = f"jax_ir{id}_{_make_string_safe_for_filename(name)}.mlir"
name = epath.Path(FLAGS.jax_dump_ir_to) / name
name.write_text(ir)
def compile_or_get_cached(backend, computation: ir.Module, compile_options,
host_callbacks):
# Avoid import cycle between jax and jax.experimental
from jax.experimental.compilation_cache import compilation_cache as cc
sym_name = computation.operation.attributes['sym_name']
module_name = ir.StringAttr(sym_name).value
# Convert ir.Module to a string representation, unless the
# back-end expliclity flags the ability to handle a module directly
# (avoiding the overhead of back and forth conversions)
serialized_computation: Union[str, bytes, ir.Module]
if getattr(backend, "needs_str_ir", True):
if xc.mlir_api_version >= 34:
serialized_computation = mlir.module_to_bytecode(computation)
else:
serialized_computation = mlir.module_to_string(computation)
else:
serialized_computation = computation
# Persistent compilation cache only implemented on TPU.
# TODO(skye): add warning when initializing cache on unsupported default platform
supported_platforms = ["tpu"]
# GPU caching can be enabled if JitRt is enabled.
# TODO(b/232263664): Remove check when JitRt is enabled by default.
if "--xla_gpu_enable_xla_runtime_executable=true" in os.environ.get("XLA_FLAGS", ""):
supported_platforms.append("gpu")
if cc.is_initialized() and backend.platform in supported_platforms:
cached_executable = cc.get_executable(serialized_computation,
compile_options, backend)
if cached_executable is not None:
logging.info('Persistent compilation cache hit for %s.', module_name)
return cached_executable
else:
compiled = backend_compile(backend, serialized_computation,
compile_options, host_callbacks)
cc.put_executable(module_name, serialized_computation, compile_options,
compiled, backend)
return compiled
if FLAGS.jax_dump_ir_to:
_dump_ir_to_file(module_name, mlir.module_to_string(computation))
return backend_compile(backend, serialized_computation, compile_options,
host_callbacks)
def get_buffer_counts(out_avals, ordered_effects, has_unordered_effects):
buffer_counts = [aval_to_num_buffers(aval) for aval in out_avals]
if ordered_effects or has_unordered_effects:
num_output_tokens = len(ordered_effects)
# TODO(sharadmv): remove check when minimum jaxlib version is bumped
if not can_execute_with_token:
num_output_tokens += has_unordered_effects
buffer_counts = ([1] * num_output_tokens) + buffer_counts
return buffer_counts
class XlaCompiledComputation(stages.XlaExecutable):
2022-04-14 14:18:31 -07:00
def __init__(self, xla_executable, in_avals, kept_var_idx, unsafe_call,
keepalive: Any):
self._xla_executable = xla_executable
self.in_avals = in_avals
self._kept_var_idx = kept_var_idx
self.unsafe_call = unsafe_call
2022-04-14 14:18:31 -07:00
# Only the `unsafe_call` function is cached, so to avoid the `keepalive`
# being garbage collected we attach it to `unsafe_call`.
self.unsafe_call.keepalive = keepalive
@staticmethod
def from_xla_computation(name: str, xla_computation: Optional[ir.Module],
in_type: Optional[pe.InputType],
out_type: Optional[pe.OutputType], nreps: int,
device: Optional[Device], backend: Backend,
tuple_args: bool,
in_avals: Sequence[core.AbstractValue],
out_avals: Sequence[core.AbstractValue],
has_unordered_effects: bool,
ordered_effects: List[core.Effect],
kept_var_idx: Set[int], keepalive: Optional[Any],
host_callbacks: List[Any]) -> XlaCompiledComputation:
sticky_device = device
input_handler = _input_handler(backend, in_type, out_type)
result_handler = _result_handler(backend, sticky_device, out_type)
options = xb.get_compile_options(
num_replicas=nreps, num_partitions=1,
device_assignment=(sticky_device,) if sticky_device else None)
options.parameter_is_tupled_arguments = tuple_args
2021-12-13 21:51:08 -08:00
with log_elapsed_time(f"Finished XLA compilation of {name} "
"in {elapsed_time} sec"):
compiled = compile_or_get_cached(backend, xla_computation, options,
host_callbacks)
buffer_counts = get_buffer_counts(out_avals, ordered_effects,
has_unordered_effects)
execute = _execute_compiled if nreps == 1 else _execute_replicated
unsafe_call = partial(execute, name, compiled, input_handler, buffer_counts, # type: ignore # noqa: F811
result_handler, has_unordered_effects,
ordered_effects, kept_var_idx, bool(host_callbacks))
2022-04-14 14:18:31 -07:00
return XlaCompiledComputation(compiled, in_avals, kept_var_idx, unsafe_call,
keepalive)
def is_trivial(self):
return self._xla_executable == None
@property
def xla_executable(self):
# TODO(frostig): remove in favor of runtime_executable?
if self.is_trivial():
raise ValueError("A trivial compiled computation has no XLA executable")
return self._xla_executable
@staticmethod
def from_trivial_jaxpr(jaxpr, consts, device, in_avals, out_avals,
has_unordered_effects, ordered_effects, kept_var_idx,
keepalive: Optional[Any],
host_callbacks: List[Any]) -> XlaCompiledComputation:
2022-04-14 14:18:31 -07:00
assert keepalive is None
result_handlers = map(partial(aval_to_result_handler, device), out_avals)
unsafe_call = partial(_execute_trivial, jaxpr, device, consts, out_avals,
result_handlers, has_unordered_effects,
ordered_effects, kept_var_idx, bool(host_callbacks))
2022-04-14 14:18:31 -07:00
return XlaCompiledComputation(None, in_avals, kept_var_idx, unsafe_call,
keepalive)
# -- stages.XlaExecutable overrides
def xla_extension_executable(self):
return self.xla_executable
def call(self, *args):
arg_specs = unsafe_map(arg_spec, args)
arg_avals = [spec[0] for i, spec in enumerate(arg_specs)
if i in self._kept_var_idx]
check_arg_avals_for_call(self.in_avals, arg_avals)
return self.unsafe_call(*args)
def check_arg_avals_for_call(ref_avals, arg_avals):
if len(ref_avals) != len(arg_avals):
raise TypeError(
f"Computation compiled for {len(ref_avals)} inputs "
f"but called with {len(arg_avals)}")
for ref_aval, arg_aval in zip(ref_avals, arg_avals):
if not core.typematch(ref_aval, arg_aval):
ref_avals_fmt = ', '.join(str(a) for a in ref_avals)
arg_avals_fmt = ', '.join(str(a) for a in arg_avals)
raise TypeError(
f"Computation compiled for input types:\n {ref_avals_fmt}\n"
f"called with:\n {arg_avals_fmt}")
def device_put(x, device: Optional[Device] = None) -> Tuple[Any, ...]:
x = xla.canonicalize_dtype(x)
try:
return device_put_handlers[type(x)](x, device)
except KeyError as err:
raise TypeError(f"No device_put handler for type: {type(x)}") from err
# TODO(phawkins): update users.
xla.device_put = device_put
def _device_put_array(x, device: Optional[Device]):
backend = xb.get_device_backend(device)
if x.dtype == dtypes.float0:
x = np.zeros(x.shape, dtype=np.dtype(bool))
return (backend.buffer_from_pyval(x, device),)
def _device_put_scalar(x, device):
return _device_put_array(dtypes.coerce_to_array(x), device)
def _device_put_token(_, device):
backend = xb.get_device_backend(device)
return (backend.buffer_from_pyval(np.zeros((), dtype=np.dtype(np.bool_)),
device),)
_scalar_types = dtypes.python_scalar_dtypes.keys()
device_put_handlers: Dict[Any, Callable[[Any, Optional[Device]],
Tuple[Any, ...]]] = {}
device_put_handlers.update((t, _device_put_array) for t in array_types)
device_put_handlers.update((t, _device_put_scalar) for t in _scalar_types)
device_put_handlers[core.Token] = _device_put_token
device_put_handlers[core.BInt] = lambda x, d: _device_put_scalar(x.val, d)
def _device_put_device_array(x: Union[device_array.DeviceArrayProtocol, device_array._DeviceArray], device: Optional[Device]):
x = _copy_device_array_to_device(x, device)
return (x.device_buffer,)
for t in device_array.device_array_types:
device_put_handlers[t] = _device_put_device_array
device_put_handlers[core.PaddedArray] = lambda x, d: device_put(x._data, d)
def _copy_device_array_to_device(
x: Union[device_array.DeviceArrayProtocol, device_array._DeviceArray],
device: Optional[xc.Device]
) -> Union[device_array.DeviceArrayProtocol, device_array._DeviceArray]:
if device is None:
# no copying to be done because there's no target specified
return x
elif xb.get_device_backend(device).platform == x.device_buffer.platform():
# source and target platforms are the same
if x.device_buffer.device() == device:
# no copying to be done because source equals target
if x._device == device:
return x
else:
moved_buf = x.device_buffer # We need to change stickyness
else:
# move the buffer with a device-to-device copy
moved_buf = x.device_buffer.copy_to_device(device)
else:
# buffers from different XLA backends are passed through the host.
backend = xb.get_device_backend(device)
moved_buf = backend.buffer_from_pyval(np.asarray(x.device_buffer), device)
return device_array.make_device_array(x.aval, device, moved_buf)
def _copy_array_to_device(x: Array, device: Optional[xc.Device]) -> Array:
"""Copies `Array`s with SingleDeviceSharding to a different device."""
from jax.experimental import array, sharding
if device is None:
# no copying to be done because there's no target specified
return x
buf = x._arrays[0]
if xb.get_device_backend(device).platform == buf.platform():
# source and target platforms are the same
if x.device() == device:
# no copying to be done because source equals target
if x._committed:
return x
else:
moved_buf = buf # We need to change stickyness
else:
# move the buffer with a device-to-device copy
moved_buf = buf.copy_to_device(device)
else:
# buffers from different XLA backends are passed through the host.
backend = xb.get_device_backend(device)
moved_buf = backend.buffer_from_pyval(np.asarray(buf), device)
return array.Array(
x.aval, sharding.SingleDeviceSharding(moved_buf.device()), [moved_buf],
committed=(device is not None))
def _device_put_impl(x, device: Optional[Device] = None):
from jax.experimental import array, sharding
if device_array.type_is_device_array(x):
return _copy_device_array_to_device(x, device)
if type(x) is array.Array and isinstance(x.sharding, sharding.SingleDeviceSharding):
return _copy_array_to_device(x, device)
try:
a = xla.abstractify(x)
except TypeError as err:
raise TypeError(
f"Argument '{x}' of type {type(x)} is not a valid JAX type") from err
return aval_to_result_handler(device, a)(None, *device_put(x, device))
device_put_p = core.Primitive('device_put')
device_put_p.def_impl(_device_put_impl)
device_put_p.def_abstract_eval(lambda x, device=None: x)
ad.deflinear2(device_put_p, lambda cotangent, _, **kwargs: [cotangent])
batching.defvectorized(device_put_p)
def _device_put_lowering(ctx, x, *, device):
return [x]
mlir.register_lowering(device_put_p, _device_put_lowering)