rocm_jax/tests/pmap_test.py

1492 lines
53 KiB
Python
Raw Normal View History

2019-01-28 11:13:34 -08:00
# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from concurrent.futures import ThreadPoolExecutor
2019-02-23 20:34:14 -08:00
from functools import partial
import os
from random import shuffle
import threading
2019-03-19 16:54:55 -07:00
from unittest import SkipTest
2019-02-23 20:34:14 -08:00
import numpy as np
2019-01-28 11:13:34 -08:00
from absl.testing import absltest
from absl.testing import parameterized
import jax
import jax.numpy as jnp
2019-01-28 11:13:34 -08:00
from jax import test_util as jtu
from jax import tree_util
from jax import core
2019-02-23 20:34:14 -08:00
from jax import lax
from jax import random
Allow ShardedDeviceArrays to represent arbitrary data shardings. (#2142) This change introduces ShardingSpec, a struct describing how an array should be sharded. This is integrated into ShardedDeviceArray to allow more flexible sharding. It supports partitioning (both "pmap-style", where an entire axis is decomposed into separate shards and doesn't appear in the on-device shape at all, and "sharded_jit-style", where an axis is chunked into shards but remains in the on-device shape) and replication. This removes the need for ChunkedDeviceArray, since a ShardedDeviceArray can now represent chunks. Here are pmap_benchmark times showing that the overall effect of this change neutral to positive (integer indexing is much faster!). **pmap_shard_args** ``` ---------Benchmark summary for pmap_shard_args--------- nargs nshards mean %std relative mean/baseline ------- --------- --------- --------- ---------- --------------- 10 8 0.041855 4.15223 1 1.01466 100 8 0.129884 4.85321 3.1032 0.988543 101 8 0.136347 6.20233 3.2576 0.967138 500 8 0.533207 3.6815 12.7394 1.0294 1000 8 1.10338 0.525193 26.362 0.960435 5000 8 5.33911 0 127.562 0.963319 100 2 0.0638619 10.7069 1.52579 1.0362 100 4 0.0868253 6.76701 2.07443 0.967323 100 8 0.128151 6.46004 3.06177 0.979742 100 100 1.22631 1.94885 29.299 1.00371 100 500 6.60746 0 157.865 0.956657 ``` **pmap_shard_outputs** ``` nouts nshards mean %std relative mean/baseline ------- --------- ---------- --------- ---------- --------------- 10 8 0.0664526 9.49251 1 0.938466 100 8 0.195711 2.19429 2.94512 1.04239 500 8 0.82577 0.330864 12.4265 0.994669 1000 8 1.68323 1.0516 25.3298 0.966915 5000 8 8.89032 0 133.784 0.998038 100 2 0.074806 10.1734 1.12571 0.980254 100 4 0.121334 5.76774 1.82588 1.02033 100 8 0.185253 5.45068 2.78775 1.01666 100 100 2.37076 0 35.6759 1.08629 100 500 17.0832 0 257.074 0.976879 ``` **ShardedDeviceArray_indexing** ``` indices_fn mean %std relative mean/baseline ------------------ ---------- ------- ---------- --------------- integer_indices 0.0603473 8.29159 1 0.359496 integer_2D_indices 18.0241 0 298.672 1.00583 ``` This is how I ran the benchmark: ``` TARGET_TOTAL_SECS=2 CUDA_VISIBLE_DEVICES= XLA_FLAGS=--xla_force_host_platform_device_count=500 python3 benchmarks/pmap_benchmark.py --baseline_dir=<results as of a3cc9a7> ```
2020-04-15 12:43:55 -07:00
from jax.abstract_arrays import ShapedArray
2019-06-23 16:41:59 -07:00
from jax.api import (pmap, soft_pmap, jit, vmap, jvp, grad, make_jaxpr,
linearize, device_put)
2019-02-23 20:34:14 -08:00
from jax.lib import xla_bridge
2019-03-19 16:54:55 -07:00
from jax.util import prod
from jax.interpreters import pxla
2019-07-06 10:00:08 -07:00
from jax.interpreters import xla
2019-01-28 11:13:34 -08:00
from jax.config import config
config.parse_flags_with_absl()
prev_xla_flags = None
# Run all tests with 8 CPU devices.
def setUpModule():
global prev_xla_flags
prev_xla_flags = os.getenv("XLA_FLAGS")
flags_str = prev_xla_flags or ""
# Don't override user-specified device count, or other XLA flags.
if "xla_force_host_platform_device_count" not in flags_str:
os.environ["XLA_FLAGS"] = (flags_str +
" --xla_force_host_platform_device_count=8")
# Clear any cached backends so new CPU backend will pick up the env var.
xla_bridge.get_backend.cache_clear()
# Reset to previous configuration in case other test modules will be run.
def tearDownModule():
if prev_xla_flags is None:
del os.environ["XLA_FLAGS"]
else:
os.environ["XLA_FLAGS"] = prev_xla_flags
xla_bridge.get_backend.cache_clear()
2019-01-28 11:13:34 -08:00
ignore_soft_pmap_warning = partial(
jtu.ignore_warning, message="soft_pmap is an experimental.*")
2019-02-23 20:34:14 -08:00
class PmapTest(jtu.JaxTestCase):
def _getMeshShape(self, device_mesh_shape):
device_count = xla_bridge.device_count()
if any(size == -1 for size in device_mesh_shape):
try:
return np.arange(device_count).reshape(device_mesh_shape).shape
except ValueError as err:
msg = "device mesh shape {} not compatible with device count {}"
raise SkipTest(msg.format(device_mesh_shape, device_count)) from err
else:
if device_count % prod(device_mesh_shape):
msg = "device mesh size {} does not divide available device count {}"
raise SkipTest(msg.format(prod(device_mesh_shape), device_count))
else:
return device_mesh_shape
2019-03-19 16:54:55 -07:00
def testBasic(self):
f = pmap(lambda x: x - lax.psum(x, 'i'), axis_name='i')
2019-03-19 16:54:55 -07:00
shape = (xla_bridge.device_count(), 4)
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
expected = x - np.sum(x, 0)
2019-03-19 16:54:55 -07:00
ans = f(x)
self.assertAllClose(ans, expected, check_dtypes=False)
2020-01-29 18:10:48 +00:00
def testMean(self):
f = pmap(lambda x: x - lax.pmean(x, 'i'), axis_name='i')
shape = (xla_bridge.device_count(), 4)
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
expected = x - np.broadcast_to(np.mean(x, 0), x.shape)
2020-01-29 18:10:48 +00:00
ans = f(x)
self.assertAllClose(ans, expected, check_dtypes=False)
def testGather(self):
f = pmap(lambda x: lax.all_gather(x, 'i'), axis_name='i')
shape = (xla_bridge.device_count(), 4)
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
expected = np.array([x] * xla_bridge.device_count())
ans = f(x)
self.assertAllClose(ans, expected, check_dtypes=False)
def testTrees(self):
ptranspose = lambda x, axis_name: lax.all_to_all(x, axis_name, 0, 0)
def protate(x, axis_name):
n = lax.psum(1, axis_name)
return lax.ppermute(x, axis_name, [(i, (i + 1) % n) for i in range(n)])
tree_f = lambda f: partial(tree_util.tree_map, f)
jax_f = lambda p: pmap(lambda x: p(x, 'i'), 'i')
np_f = lambda p: tree_f(lambda x: np.broadcast_to(p(x, 0), x.shape))
np_transpose = tree_f(np.transpose)
np_rotate = tree_f(lambda x: np.concatenate([x[-1:], x[:-1]]))
n = xla_bridge.device_count()
x = {'a': np.arange(1 * n * n, 2 * n * n).reshape([n, n]),
'b': np.arange(2 * n * n, 3 * n * n).reshape([n, n]),
'c': np.arange(4 * n * n, 5 * n * n).reshape([n, n])}
assert_allclose = partial(tree_util.tree_multimap,
partial(self.assertAllClose, check_dtypes=False))
assert_allclose(jax_f(lax.pmax)(x), np_f(np.max)(x))
assert_allclose(jax_f(lax.pmin)(x), np_f(np.min)(x))
assert_allclose(jax_f(lax.psum)(x), np_f(np.sum)(x))
assert_allclose(jax_f(lax.pmean)(x), np_f(np.mean)(x))
if jtu.device_under_test() not in ("cpu", "gpu"):
# NOTE: all-to-all and ppermute only supported on TPU.
assert_allclose(jax_f(ptranspose)(x), np_transpose(x))
assert_allclose(jax_f(protate)(x), np_rotate(x))
def testCollectivesWithTreesOfDifferentDtypes(self):
n = len(jax.devices())
x = {'a': np.arange(1 * n * n, 2 * n * n, dtype=np.float32).reshape([n, n]),
'b': np.arange(2 * n * n, 3 * n * n, dtype=np.int32).reshape([n, n]),
'c': np.arange(4 * n * n, 5 * n * n, dtype=np.float32).reshape([n, n]),
'd': np.arange(6 * n * n, 7 * n * n, dtype=np.int32).reshape([n, n])}
tree_f = lambda f: partial(tree_util.tree_map, f)
jax_f = lambda p: pmap(lambda x: p(x, 'i'), 'i')
np_f = lambda p: tree_f(lambda x: np.broadcast_to(p(x, 0), x.shape))
assert_allclose = partial(tree_util.tree_multimap,
partial(self.assertAllClose, check_dtypes=False))
assert_allclose(jax_f(lax.pmax)(x), np_f(np.max)(x))
assert_allclose(jax_f(lax.pmin)(x), np_f(np.min)(x))
assert_allclose(jax_f(lax.psum)(x), np_f(np.sum)(x))
assert_allclose(jax_f(lax.pmean)(x), np_f(np.mean)(x))
def testComplexPsum(self):
f = pmap(lambda x: x - lax.psum(x, 'i'), axis_name='i')
shape = (xla_bridge.device_count(), 4 * 2)
x = np.arange(prod(shape), dtype=np.float32).reshape(shape).view(np.complex64)
expected = x - np.sum(x, 0)
ans = f(x)
self.assertAllClose(ans, expected, check_dtypes=False)
2019-03-19 16:54:55 -07:00
def testNestedBasic(self):
f = lambda x: lax.psum(lax.psum(x, 'i'), 'j')
2019-03-19 16:54:55 -07:00
f = pmap(pmap(f, 'i'), 'j')
2019-03-20 17:46:16 -07:00
def sum_and_broadcast(x, axis):
return np.repeat(np.sum(x, axis, keepdims=True), x.shape[axis], axis)
2019-03-20 17:46:16 -07:00
2019-03-19 16:54:55 -07:00
shape = (xla_bridge.device_count(), 1, 4)
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
2019-03-19 16:54:55 -07:00
ans = f(x)
2019-03-20 17:46:16 -07:00
expected = sum_and_broadcast(sum_and_broadcast(x, 0), 1)
2019-03-19 16:54:55 -07:00
self.assertAllClose(ans, expected, check_dtypes=False)
def testMismatchedAxisSizes(self):
n = xla_bridge.device_count()
f = pmap(lambda x, y: x + y)
self.assertRaisesRegex(
ValueError,
"pmap got inconsistent sizes for array axes to be mapped",
lambda: f(np.random.randn(n), np.random.randn(n - 1)))
2019-03-19 16:54:55 -07:00
@parameterized.named_parameters(
Allow ShardedDeviceArrays to represent arbitrary data shardings. (#2142) This change introduces ShardingSpec, a struct describing how an array should be sharded. This is integrated into ShardedDeviceArray to allow more flexible sharding. It supports partitioning (both "pmap-style", where an entire axis is decomposed into separate shards and doesn't appear in the on-device shape at all, and "sharded_jit-style", where an axis is chunked into shards but remains in the on-device shape) and replication. This removes the need for ChunkedDeviceArray, since a ShardedDeviceArray can now represent chunks. Here are pmap_benchmark times showing that the overall effect of this change neutral to positive (integer indexing is much faster!). **pmap_shard_args** ``` ---------Benchmark summary for pmap_shard_args--------- nargs nshards mean %std relative mean/baseline ------- --------- --------- --------- ---------- --------------- 10 8 0.041855 4.15223 1 1.01466 100 8 0.129884 4.85321 3.1032 0.988543 101 8 0.136347 6.20233 3.2576 0.967138 500 8 0.533207 3.6815 12.7394 1.0294 1000 8 1.10338 0.525193 26.362 0.960435 5000 8 5.33911 0 127.562 0.963319 100 2 0.0638619 10.7069 1.52579 1.0362 100 4 0.0868253 6.76701 2.07443 0.967323 100 8 0.128151 6.46004 3.06177 0.979742 100 100 1.22631 1.94885 29.299 1.00371 100 500 6.60746 0 157.865 0.956657 ``` **pmap_shard_outputs** ``` nouts nshards mean %std relative mean/baseline ------- --------- ---------- --------- ---------- --------------- 10 8 0.0664526 9.49251 1 0.938466 100 8 0.195711 2.19429 2.94512 1.04239 500 8 0.82577 0.330864 12.4265 0.994669 1000 8 1.68323 1.0516 25.3298 0.966915 5000 8 8.89032 0 133.784 0.998038 100 2 0.074806 10.1734 1.12571 0.980254 100 4 0.121334 5.76774 1.82588 1.02033 100 8 0.185253 5.45068 2.78775 1.01666 100 100 2.37076 0 35.6759 1.08629 100 500 17.0832 0 257.074 0.976879 ``` **ShardedDeviceArray_indexing** ``` indices_fn mean %std relative mean/baseline ------------------ ---------- ------- ---------- --------------- integer_indices 0.0603473 8.29159 1 0.359496 integer_2D_indices 18.0241 0 298.672 1.00583 ``` This is how I ran the benchmark: ``` TARGET_TOTAL_SECS=2 CUDA_VISIBLE_DEVICES= XLA_FLAGS=--xla_force_host_platform_device_count=500 python3 benchmarks/pmap_benchmark.py --baseline_dir=<results as of a3cc9a7> ```
2020-04-15 12:43:55 -07:00
{"testcase_name": "_mesh={}".format(device_mesh_shape).replace(" ", ""),
2019-03-19 16:54:55 -07:00
"device_mesh_shape": device_mesh_shape}
for device_mesh_shape in [(1, 1), (2, -1), (-1, 2)])
def testNestedShardingAndStacking(self, device_mesh_shape):
mesh_shape = self._getMeshShape(device_mesh_shape)
2019-03-19 16:54:55 -07:00
f = lambda x: x
f = pmap(pmap(f, 'i'), 'j')
shape = mesh_shape + (4,)
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
2019-03-20 17:46:16 -07:00
2019-03-19 16:54:55 -07:00
ans = f(x)
2019-03-20 17:46:16 -07:00
expected = x
2019-03-19 16:54:55 -07:00
self.assertEqual(ans.shape, expected.shape)
self.assertAllClose(ans, expected, check_dtypes=False)
def testPartiallyMapped(self):
f = pmap(lambda x, y: x, in_axes=(None, 0))
g = pmap(lambda x, y: x - lax.psum(y, 'i'), axis_name='i', in_axes=(None, 0))
mesh_shape = (xla_bridge.device_count(),)
shape = mesh_shape + (4,)
x = np.array(3., dtype=np.float32)
y = np.arange(prod(shape), dtype=np.float32).reshape(shape)
f_expected = np.broadcast_to(x, mesh_shape)
f_ans = f(x, y)
self.assertAllClose(f_ans, f_expected, check_dtypes=True)
self.assertIsInstance(f_ans, pxla.ShardedDeviceArray)
# the output is actually replicated (has the same values in each device buffer)
# but out_axes is implicitly 0, so we shouldn't have replication in the
# sharding spec.
self.assertEqual(f_ans.sharding_spec.replication_factor, 1)
g_expected = np.broadcast_to(x - np.sum(y, 0, keepdims=True), shape)
g_ans = g(x, y)
self.assertAllClose(g_ans, g_expected, check_dtypes=True)
self.assertIsInstance(g_ans, pxla.ShardedDeviceArray)
self.assertEqual(g_ans.sharding_spec.replication_factor, 1)
@parameterized.named_parameters(
{"testcase_name": "_mesh={}".format(device_mesh_shape).replace(" ", ""),
"device_mesh_shape": device_mesh_shape}
for device_mesh_shape in [(1, 1), (2, -1), (-1, 2)])
def testPartiallyMappedNested(self, device_mesh_shape):
mesh_shape = self._getMeshShape(device_mesh_shape)
f = pmap(lambda x, y: x - lax.psum(y, 'i'), axis_name='i', in_axes=(None, 0))
f = pmap(f, axis_name='j', in_axes=(None, 0))
x = 3.
y = np.arange(prod(mesh_shape), dtype=np.float32).reshape(mesh_shape)
expected = np.broadcast_to(x - np.sum(y, 1, keepdims=True), mesh_shape)
ans = f(x, y)
self.assertAllClose(ans, expected, check_dtypes=False)
2019-03-19 16:54:55 -07:00
def testJvpAndPartialEval(self):
@partial(pmap, axis_name='i')
def f(x):
return jnp.sin(x)
2019-03-19 16:54:55 -07:00
def splitjvp(x):
_, jvp = linearize(f, x)
return jvp(jnp.ones_like(x))
2019-03-19 16:54:55 -07:00
shape = (xla_bridge.device_count(), 4)
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
expected = np.cos(x)
2019-03-19 16:54:55 -07:00
ans = splitjvp(x)
self.assertAllClose(ans, expected, check_dtypes=False)
make_jaxpr(splitjvp)(x) # doesn't crash
def testGradBasic(self):
@partial(pmap, axis_name='i')
def f(x):
return jnp.sin(x)
2019-03-19 16:54:55 -07:00
shape = (xla_bridge.device_count(), 4)
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
2019-03-19 16:54:55 -07:00
ans = grad(lambda x: jnp.sum(jnp.sin(x)))(x)
expected = grad(lambda x: jnp.sum(f(x)))(x)
2019-03-19 16:54:55 -07:00
self.assertAllClose(ans, expected, check_dtypes=False)
def testGradOfPsum(self):
@partial(pmap, axis_name='i')
def f(x):
return lax.psum(x, axis_name='i')
shape = (jax.device_count(), 4)
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
jtu.check_grads(f, (x,), 2, ["fwd", "rev"], 1e-2, 1e-2, eps=1.)
2019-03-19 16:54:55 -07:00
def testGradOfJvp(self):
@partial(pmap, axis_name='i')
def f(x):
return jnp.sin(x)
2019-03-19 16:54:55 -07:00
def splitjvp(x):
_, jvp = linearize(f, x)
return jvp(jnp.ones_like(x))
2019-03-19 16:54:55 -07:00
fun = lambda x: jnp.sum(jvp(jnp.sin, (x,), (jnp.ones_like(x),))[1])
2019-03-19 16:54:55 -07:00
shape = (xla_bridge.device_count(), 4)
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
2019-03-19 16:54:55 -07:00
ans = grad(lambda x: jnp.sum(splitjvp(x)))(x)
2019-03-19 16:54:55 -07:00
expected = grad(fun)(x)
self.assertAllClose(ans, expected, check_dtypes=True)
def testTwoArgsGrad(self):
def f(x, y):
return lax.psum(5. * jnp.cos(x) * jnp.sin(y), 'i')
2019-03-19 16:54:55 -07:00
f = pmap(f, 'i')
def g(x, y):
tot = jnp.sum(5. * jnp.cos(x) * jnp.sin(y))
return tot * jnp.ones_like(x) # broadcast to map like pjit does
2019-03-19 16:54:55 -07:00
shape = (xla_bridge.device_count(), 4)
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
2019-03-19 16:54:55 -07:00
y = 4 + x
ans = grad(lambda x, y: jnp.sum(g(x, y)))(x, y)
expected = grad(lambda x, y: jnp.sum(g(x, y)))(x, y)
2019-03-19 16:54:55 -07:00
self.assertAllClose(ans, expected, check_dtypes=False)
@parameterized.named_parameters(
Allow ShardedDeviceArrays to represent arbitrary data shardings. (#2142) This change introduces ShardingSpec, a struct describing how an array should be sharded. This is integrated into ShardedDeviceArray to allow more flexible sharding. It supports partitioning (both "pmap-style", where an entire axis is decomposed into separate shards and doesn't appear in the on-device shape at all, and "sharded_jit-style", where an axis is chunked into shards but remains in the on-device shape) and replication. This removes the need for ChunkedDeviceArray, since a ShardedDeviceArray can now represent chunks. Here are pmap_benchmark times showing that the overall effect of this change neutral to positive (integer indexing is much faster!). **pmap_shard_args** ``` ---------Benchmark summary for pmap_shard_args--------- nargs nshards mean %std relative mean/baseline ------- --------- --------- --------- ---------- --------------- 10 8 0.041855 4.15223 1 1.01466 100 8 0.129884 4.85321 3.1032 0.988543 101 8 0.136347 6.20233 3.2576 0.967138 500 8 0.533207 3.6815 12.7394 1.0294 1000 8 1.10338 0.525193 26.362 0.960435 5000 8 5.33911 0 127.562 0.963319 100 2 0.0638619 10.7069 1.52579 1.0362 100 4 0.0868253 6.76701 2.07443 0.967323 100 8 0.128151 6.46004 3.06177 0.979742 100 100 1.22631 1.94885 29.299 1.00371 100 500 6.60746 0 157.865 0.956657 ``` **pmap_shard_outputs** ``` nouts nshards mean %std relative mean/baseline ------- --------- ---------- --------- ---------- --------------- 10 8 0.0664526 9.49251 1 0.938466 100 8 0.195711 2.19429 2.94512 1.04239 500 8 0.82577 0.330864 12.4265 0.994669 1000 8 1.68323 1.0516 25.3298 0.966915 5000 8 8.89032 0 133.784 0.998038 100 2 0.074806 10.1734 1.12571 0.980254 100 4 0.121334 5.76774 1.82588 1.02033 100 8 0.185253 5.45068 2.78775 1.01666 100 100 2.37076 0 35.6759 1.08629 100 500 17.0832 0 257.074 0.976879 ``` **ShardedDeviceArray_indexing** ``` indices_fn mean %std relative mean/baseline ------------------ ---------- ------- ---------- --------------- integer_indices 0.0603473 8.29159 1 0.359496 integer_2D_indices 18.0241 0 298.672 1.00583 ``` This is how I ran the benchmark: ``` TARGET_TOTAL_SECS=2 CUDA_VISIBLE_DEVICES= XLA_FLAGS=--xla_force_host_platform_device_count=500 python3 benchmarks/pmap_benchmark.py --baseline_dir=<results as of a3cc9a7> ```
2020-04-15 12:43:55 -07:00
{"testcase_name": "_mesh={}".format(device_mesh_shape).replace(" ", ""),
2019-03-19 16:54:55 -07:00
"device_mesh_shape": device_mesh_shape}
for device_mesh_shape in [(1, 1), (2, -1), (-1, 2)])
def testNestedWithClosure(self, device_mesh_shape):
mesh_shape = self._getMeshShape(device_mesh_shape)
2019-02-23 20:34:14 -08:00
@partial(pmap, axis_name='i')
2019-02-23 20:34:14 -08:00
def test_fun(x):
y = jnp.sum(jnp.sin(x))
2019-02-23 20:34:14 -08:00
@partial(pmap, axis_name='j')
2019-02-23 20:34:14 -08:00
def g(z):
return 3. * jnp.exp(jnp.sin(x).sum() * jnp.cos(y) * jnp.tan(z))
2019-02-23 20:34:14 -08:00
return grad(lambda w: jnp.sum(g(w)))(x)
2019-02-23 20:34:14 -08:00
@vmap
def baseline_fun(x):
y = jnp.sum(jnp.sin(x))
2019-02-23 20:34:14 -08:00
@vmap
def g(z):
return 3. * jnp.exp(jnp.sin(x).sum() * jnp.cos(y) * jnp.tan(z))
2019-02-23 20:34:14 -08:00
return grad(lambda w: jnp.sum(g(w)))(x)
2019-02-23 20:34:14 -08:00
2019-03-19 16:54:55 -07:00
shape = mesh_shape + (4,)
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
2019-03-19 16:54:55 -07:00
ans = grad(lambda x: jnp.sum(test_fun(x)))(x)
expected = grad(lambda x: jnp.sum(baseline_fun(x)))(x)
self.assertAllClose(ans, expected, check_dtypes=True, atol=1e-3)
2019-02-01 16:59:28 -08:00
def testShardedDeviceArrays(self):
2019-03-19 16:54:55 -07:00
f = lambda x: 2 * x
f = pmap(f, axis_name='i')
shape = (xla_bridge.device_count(), 4)
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
2019-03-19 16:54:55 -07:00
# test that we can pass in and out ShardedDeviceArrays
y = f(x)
self.assertIsInstance(y, jnp.ndarray)
self.assertIsInstance(y, pxla.ShardedDeviceArray)
2019-03-19 16:54:55 -07:00
self.assertAllClose(y, 2 * x, check_dtypes=False)
z = f(y)
self.assertIsInstance(z, pxla.ShardedDeviceArray)
2019-03-19 16:54:55 -07:00
self.assertAllClose(z, 2 * 2 * x, check_dtypes=False)
# test that we can pass in a regular DeviceArray
y = f(device_put(x))
self.assertIsInstance(y, pxla.ShardedDeviceArray)
2019-03-19 16:54:55 -07:00
self.assertAllClose(y, 2 * x, check_dtypes=False)
# test that we can pass a ShardedDeviceArray to a regular jit computation
z = y + y
self.assertAllClose(z, 2 * 2 * x, check_dtypes=False)
# test that we can handle device movement on dispatch
y.device_buffers = y.device_buffers[::-1]
z = f(y)
self.assertAllClose(z, 2 * 2 * x[::-1], check_dtypes=False)
# test that the repr doesn't crash
repr(z)
# Tests edge cases in lax._reshape_sharded_device_array
@parameterized.named_parameters(
{"testcase_name": "_in={}_out={}".format(in_shape, out_shape)
.replace(" ", ""),
"in_shape": in_shape, "out_shape": out_shape}
for in_shape, out_shape in [
[(1,1), (1,)], [(1,), (1,1)], [(1,), ()], [(4,7), (2,2,7)]
])
def testShardedDeviceArrayReshape(self, in_shape, out_shape):
if xla_bridge.device_count() < max(in_shape[:1] + out_shape[:1]):
raise SkipTest("not enough devices")
x = np.arange(prod(in_shape)).reshape(in_shape)
sharded_x = pmap(lambda x: x)(x)
self.assertAllClose(sharded_x.reshape(out_shape), x.reshape(out_shape),
check_dtypes=False)
def testPsumMultiple(self):
f = lambda x: lax.psum(x, ('i', 'j'))
f = pmap(pmap(f, 'i'), 'j')
def sum_and_broadcast(x, axis):
return np.repeat(np.sum(x, axis, keepdims=True), x.shape[axis], axis)
device_count = xla_bridge.device_count()
num_pairs, ragged = divmod(device_count, 2)
if num_pairs > 1 and not ragged:
shape = (num_pairs, 2, 4)
else:
shape = (device_count, 1, 4)
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
ans = f(x)
expected = sum_and_broadcast(sum_and_broadcast(x, 0), 1)
self.assertAllClose(ans, expected, check_dtypes=False)
def testPsumReplicaGroups(self):
replicas = xla_bridge.device_count()
if replicas % 2 != 0:
raise SkipTest
axis_index_groups = np.arange(replicas).reshape(
2, replicas // 2).tolist()
f = lambda x: x - lax.psum(x, 'i', axis_index_groups=axis_index_groups)
f = pmap(f, 'i')
shape = (replicas, 4)
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
def sum_helper(a):
return np.broadcast_to(a.sum(0, keepdims=True),
(replicas // 2, x.shape[1]))
expected_psum_1 = sum_helper(x[:replicas // 2])
expected_psum_2 = sum_helper(x[replicas // 2:])
expected_psum = np.concatenate([expected_psum_1, expected_psum_2], 0)
expected = x - expected_psum
ans = f(x)
self.assertAllClose(ans, expected, check_dtypes=False)
def testNestedPmapReplicaGroups(self):
replicas = xla_bridge.device_count()
if replicas % 4 != 0:
raise SkipTest
axis_index_groups = np.arange(replicas // 2).reshape(
2, replicas // 4).tolist()
f = lambda x: x - lax.psum(x, 'i', axis_index_groups=axis_index_groups)
f1 = pmap(pmap(f, 'i'), 'j')
f2 = pmap(lambda x: pmap(f, 'i')(x) + 1., 'j') # "imperfectly nested" case
f3 = pmap(pmap(f, 'j'), 'i')
shape = (2, replicas // 2, 4)
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
def sum_helper_f1(a):
return np.broadcast_to(a.sum(1, keepdims=True),
(shape[0], shape[1] // 2, shape[2]))
expected_psum_1 = sum_helper_f1(x[:, :replicas // 4])
expected_psum_2 = sum_helper_f1(x[:, replicas // 4:])
expected_psum = np.concatenate([expected_psum_1, expected_psum_2], 1)
expected = x - expected_psum
ans = f1(x)
self.assertAllClose(ans, expected, check_dtypes=True)
expected = x - expected_psum + 1.
ans = f2(x)
self.assertAllClose(ans, expected, check_dtypes=True)
shape = (replicas // 2, 2, 4)
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
def sum_helper_f3(a):
return np.broadcast_to(a.sum(0, keepdims=True),
(shape[0] // 2, shape[1], shape[2]))
expected_psum_1 = sum_helper_f3(x[:replicas // 4])
expected_psum_2 = sum_helper_f3(x[replicas // 4:])
expected_psum = np.concatenate([expected_psum_1, expected_psum_2], 0)
expected = x - expected_psum
ans = f3(x)
self.assertAllClose(ans, expected, check_dtypes=True)
def testAxisGroups(self):
axis_env = xla.AxisEnv(8, ('i', 'j'), (4, 2))
groups = xla.axis_groups(axis_env, 'i')
self.assertEqual(groups, ((0, 2, 4, 6), (1, 3, 5, 7)))
groups = xla.axis_groups(axis_env, 'j')
self.assertEqual(groups, ((0, 1), (2, 3), (4, 5), (6, 7)))
groups = xla.axis_groups(axis_env, ('i', 'j'))
self.assertEqual(groups, ((0, 1, 2, 3, 4, 5, 6, 7,),))
groups = xla.axis_groups(axis_env, ('j', 'i'))
self.assertEqual(len(groups), 1)
self.assertEqual((tuple(sorted(groups[0])),),
((0, 1, 2, 3, 4, 5, 6, 7,),)) # order doesn't matter
@jtu.skip_on_devices("cpu", "gpu")
def testCollectivePermute(self):
device_count = xla_bridge.device_count()
2019-05-10 14:24:15 -07:00
rotation = [(i, (i + 1) % device_count) for i in range(device_count)]
f = lambda x: lax.ppermute(x, perm=rotation, axis_name='i')
f = pmap(f, 'i')
x = jnp.arange(4 * device_count).reshape((device_count, 4))
ans = f(x)
expected = np.roll(x, shift=1, axis=0)
self.assertAllClose(ans, expected, check_dtypes=False)
@jtu.skip_on_devices("cpu", "gpu")
def testCollectivePermuteGrad(self):
device_count = xla_bridge.device_count()
shift_right = [(i, (i + 1)) for i in range(device_count - 1)]
f = lambda x: lax.ppermute(x, perm=shift_right, axis_name='i')
y = np.pi + np.arange(device_count, dtype=np.float32)
g = lambda x: jnp.sum(y * pmap(f, 'i')(x))
x = np.arange(device_count, dtype=np.float32)
ans = grad(g)(x)
expected = np.concatenate([np.pi + np.arange(1, device_count), [0]])
self.assertAllClose(ans, expected, check_dtypes=False)
@jtu.skip_on_devices("cpu", "gpu")
def testCollectivePermuteCyclicGrad(self):
device_count = xla_bridge.device_count()
shift_right = [(i, (i + 1) % device_count) for i in range(device_count)]
f = lambda x: lax.ppermute(x, perm=shift_right, axis_name='i')
y = np.pi + np.arange(device_count, dtype=np.float32)
g = lambda x: jnp.sum(y * pmap(f, 'i')(x))
x = np.arange(device_count, dtype=np.float32)
ans = grad(g)(x)
expected = np.roll(np.pi + np.arange(device_count), 1)
self.assertAllClose(ans, expected, check_dtypes=False)
2020-01-10 16:49:08 -08:00
@jtu.skip_on_devices("cpu")
def testCollectivePermuteCyclicWithPShuffle(self):
device_count = xla_bridge.device_count()
values = np.arange(device_count)
2020-01-10 16:49:08 -08:00
shift_right = [(i - 1) % device_count for i in range(device_count)]
f = lambda x: lax.pshuffle(x, perm=shift_right, axis_name='i')
expected = np.roll(values, -1)
ans = np.asarray(pmap(f, "i")(values))
2020-01-10 16:49:08 -08:00
self.assertAllClose(ans, expected, check_dtypes=False)
@jtu.skip_on_devices("cpu")
def testPShuffleWithBadPerm(self):
device_count = xla_bridge.device_count()
bad_perm = list(range(device_count))
bad_perm[0] = 1
f = lambda x: lax.pshuffle(x, perm=bad_perm, axis_name='i')
g = lambda: pmap(f, "i")(np.arange(device_count))
2020-01-10 16:49:08 -08:00
self.assertRaisesRegex(
AssertionError,
"Given `perm` does not represent a real permutation: \\[1.*\\]", g)
2020-01-10 16:49:08 -08:00
2019-11-15 14:33:39 -08:00
@jtu.skip_on_devices("cpu", "gpu")
2019-11-16 14:40:25 -08:00
def testPpermuteWithZipObject(self):
# https://github.com/google/jax/issues/1703
2019-11-15 14:33:39 -08:00
num_devices = xla_bridge.device_count()
perm = [num_devices - 1] + list(range(num_devices - 1))
f = pmap(
lambda x: lax.ppermute(x, "i", zip(range(num_devices), perm)), "i")
result = f(jnp.arange(num_devices, dtype=jnp.float32))
expected = jnp.asarray(perm, dtype=jnp.float32)
self.assertAllClose(result, expected, check_dtypes=True)
2019-11-15 14:33:39 -08:00
@jtu.skip_on_devices("cpu", "gpu")
def testRule30(self):
# This is a test of collective_permute implementing a simple halo exchange
# to run a rule 30 simulation: https://en.wikipedia.org/wiki/Rule_30
# Halo exchange should be useful in spatially-sharded convolutions and in
# other simulations.
device_count = xla_bridge.device_count()
def send_right(x, axis_name):
left_perm = [(i, (i + 1) % device_count) for i in range(device_count)]
return lax.ppermute(x, perm=left_perm, axis_name=axis_name)
def send_left(x, axis_name):
left_perm = [((i + 1) % device_count, i) for i in range(device_count)]
return lax.ppermute(x, perm=left_perm, axis_name=axis_name)
def update_board(board):
left = board[:-2]
right = board[2:]
center = board[1:-1]
return lax.bitwise_xor(left, lax.bitwise_or(center, right))
@partial(pmap, axis_name='i')
def step(board_slice):
left, right = board_slice[:1], board_slice[-1:]
right, left = send_left(left, 'i'), send_right(right, 'i')
enlarged_board_slice = jnp.concatenate([left, board_slice, right])
return update_board(enlarged_board_slice)
board = np.zeros(40, dtype=bool)
board[board.shape[0] // 2] = True
reshaped_board = board.reshape((device_count, -1))
boards = []
def print_board(board):
boards.append(''.join('*' if x else ' ' for x in board.ravel()))
print_board(reshaped_board)
for _ in range(20):
reshaped_board = step(reshaped_board)
print_board(reshaped_board)
ans = '\n'.join(boards)
expected = '\n'.join((
' * ',
' *** ',
' ** * ',
' ** **** ',
' ** * * ',
' ** **** *** ',
' ** * * * ',
' ** **** ****** ',
' ** * *** * ',
' ** **** ** * *** ',
' ** * * **** ** * ',
' ** **** ** * * **** ',
' ** * *** ** ** * * ',
' ** **** ** *** *** ** *** ',
' ** * * *** * *** * * ',
' ** **** ** * * ***** ******* ',
' ** * *** **** * *** * ',
' ** **** ** *** ** ** * *** ',
' ** * * *** * ** *** **** ** * ',
' ** **** ** * ****** * * *** ****',
' * * *** **** **** *** ** * ',
))
print(ans)
self.assertEqual(ans, expected)
@jtu.skip_on_devices("cpu", "gpu")
def testReduceMax(self):
f = pmap(lambda x: x - lax.pmax(x, 'i'), axis_name='i')
shape = (xla_bridge.device_count(), 4)
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
expected = x - np.max(x, 0)
ans = f(x)
self.assertAllClose(ans, expected, check_dtypes=False)
@jtu.skip_on_devices("cpu", "gpu")
def testReduceMin(self):
f = pmap(lambda x: x - lax.pmin(x, 'i'), axis_name='i')
shape = (xla_bridge.device_count(), 4)
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
expected = x - np.min(x, 0)
ans = f(x)
self.assertAllClose(ans, expected, check_dtypes=False)
def testDeviceCountError(self):
device_count = xla_bridge.device_count()
f = pmap(lambda x: x)
x = jnp.arange(device_count + 1)
self.assertRaisesRegex(ValueError, ".*requires.*replicas", lambda: f(x))
f = pmap(lambda x: x)
x = np.ones((device_count + 1, 10))
self.assertRaisesRegex(ValueError, ".*requires.*replicas", lambda: f(x))
f = pmap(lambda x: pmap(lambda x: x)(x))
x = np.ones((device_count, 2, 10))
self.assertRaisesRegex(ValueError, ".*requires.*replicas", lambda: f(x))
def testPmapConstant(self):
device_count = xla_bridge.device_count()
f = pmap(lambda x: 3)
x = jnp.arange(device_count)
with jtu.count_jit_and_pmap_compiles() as count:
ans = f(x)
self.assertEqual(count[0], 0)
expected = np.repeat(3, device_count)
self.assertAllClose(ans, expected, check_dtypes=False)
f = pmap(lambda x: (x, 3))
x = np.arange(device_count)
with jtu.count_jit_and_pmap_compiles() as count:
_, ans = f(x)
self.assertEqual(count[0], 1)
self.assertAllClose(ans, expected, check_dtypes=False)
def testPmapConstantDevices(self):
if xla_bridge.device_count() == 1:
raise SkipTest("this test requires multiple devices")
devices = xla_bridge.devices()[:-1]
shuffle(devices)
f = pmap(lambda x: 3, devices=devices)
x = jnp.arange(len(devices))
with jtu.count_jit_and_pmap_compiles() as count:
ans = f(x)
self.assertEqual(count[0], 0)
expected = np.repeat(3, len(devices))
self.assertAllClose(ans, expected, check_dtypes=False)
# Test that 'ans' was properly replicated across devices.
self.assertEqual([b.device() for b in ans.device_buffers], devices)
def testPmapConstantError(self):
device_count = xla_bridge.device_count()
f = pmap(lambda x: 3)
x = jnp.arange(device_count + 1)
self.assertRaisesRegex(
ValueError, r"Cannot replicate across \d+ replicas because only \d+ "
r"local devices are available.", lambda: f(x))
f = pmap(lambda x: 3, devices=[xla_bridge.devices()[0]])
x = jnp.arange(2)
self.assertRaisesRegex(
ValueError, "Cannot replicate across 2 replicas because only 1 "
"local devices are available.", lambda: f(x))
def testNestedPmapConstant(self):
if xla_bridge.device_count() == 1:
raise SkipTest("this test requires multiple devices")
f = pmap(pmap(lambda x: 3))
shape = (2, xla_bridge.device_count() // 2, 3)
x = jnp.arange(prod(shape)).reshape(shape)
with jtu.count_jit_and_pmap_compiles() as count:
ans = f(x)
self.assertEqual(count[0], 0)
expected = 3 * np.ones(shape[:2])
self.assertAllClose(ans, expected, check_dtypes=False)
# Test that 'ans' was properly replicated across devices.
expected_sharded = pmap(pmap(lambda x: x))(expected)
self.assertEqual([b.device() for b in ans.device_buffers],
[b.device() for b in expected_sharded.device_buffers])
f = pmap(pmap(lambda x: (x, 3)))
x_sharded, ans = f(x)
self.assertAllClose(ans, expected, check_dtypes=False)
self.assertEqual([b.device() for b in ans.device_buffers],
[b.device() for b in x_sharded.device_buffers])
def testNestedPmapConstantDevices(self):
raise SkipTest("Nested pmaps with devices not yet implemented")
if xla_bridge.device_count() < 6:
raise SkipTest("this test requires >= 6 devices")
devices = xla_bridge.devices()[:-2]
shuffle(devices)
f = pmap(pmap(lambda x: 3), devices=devices)
shape = (2, len(devices) // 2, 3)
x = jnp.arange(prod(shape)).reshape(shape)
with jtu.count_jit_and_pmap_compiles() as count:
ans = f(x)
self.assertEqual(count[0], 0)
expected = 3 * np.ones(shape[:2])
self.assertAllClose(ans, expected, check_dtypes=False)
# Test that 'ans' was properly replicated across devices.
expected_sharded = pmap(pmap(lambda x: x), devices=devices)(expected)
self.assertEqual([b.device() for b in ans.device_buffers],
[b.device() for b in expected_sharded.device_buffers])
def testNestedPmapConstantError(self):
f = pmap(pmap(lambda x: 3))
shape = (2, xla_bridge.device_count() // 2 + 1, 3)
x = jnp.arange(prod(shape)).reshape(shape)
self.assertRaisesRegex(
ValueError, r"Cannot replicate across \d+ replicas because only \d+ "
r"local devices are available.", lambda: f(x))
if xla_bridge.device_count() > 1:
f = pmap(pmap(lambda x: 3), devices=xla_bridge.devices()[:-1])
shape = (2, xla_bridge.device_count() // 2, 3)
x = jnp.arange(prod(shape)).reshape(shape)
self.assertRaisesRegex(
ValueError, r"Cannot replicate across \d+ replicas because only \d+ "
r"local devices are available.", lambda: f(x))
def testCollectiveConstant(self):
device_count = xla_bridge.device_count()
f = pmap(lambda x: lax.psum(1, 'i'), 'i')
x = jnp.arange(device_count)
ans = f(x)
expected = np.repeat(device_count, device_count)
self.assertAllClose(ans, expected, check_dtypes=False)
def testCollectiveConstantNested(self):
device_count = xla_bridge.device_count()
@partial(pmap, axis_name='i')
def f(x):
@partial(pmap, axis_name='j')
def g(y):
a = lax.psum(1, 'i')
b = lax.psum(1, 'j')
c = lax.psum(1, ('i', 'j'))
return a, b, c
return g(x)
shape = (device_count, 1, 4)
x = jnp.arange(prod(shape)).reshape(shape)
a, b, c = f(x)
self.assertEqual(a.shape, shape[:-1])
self.assertEqual(b.shape, shape[:-1])
self.assertEqual(c.shape, shape[:-1])
self.assertEqual(a.ravel()[0], device_count)
self.assertEqual(b.ravel()[0], 1)
self.assertEqual(c.ravel()[0], device_count * 1)
def testAxisIndex(self):
device_count = xla_bridge.device_count()
f = pmap(lambda x: x + pxla.axis_index('i'), 'i')
x = jnp.ones(device_count)
ans = f(x)
expected = 1 + np.arange(device_count)
self.assertAllClose(ans, expected, check_dtypes=False)
def testVmapOfPmap(self):
device_count = xla_bridge.device_count()
f0 = lambda x: x
f1 = pmap(f0, axis_name='i')
ax = np.random.randn(2, device_count, 50, 60)
bx = vmap(f1)(ax)
self.assertAllClose(ax, bx, check_dtypes=False)
def testVmapOfPmap2(self):
N_DEVICES = xla_bridge.device_count()
keys = random.split(random.PRNGKey(1), 13) # [13, 2]
@pmap
def g(key):
params = random.normal(key, ())
return 0.
@vmap
def s(keys):
keys = jnp.broadcast_to(keys, (N_DEVICES,) + keys.shape)
return g(keys)
2019-09-11 06:22:25 -07:00
ans = s(keys) # doesn't crash
self.assertEqual(ans.shape, (13, N_DEVICES))
def testVmapOfPmapNonLeadingAxis(self):
device_count = xla_bridge.device_count()
f0 = lambda x: x
f1 = pmap(f0, axis_name='i')
ax = np.random.randn(device_count, 2, 50, 60)
bx = vmap(f1, in_axes=2, out_axes=2)(ax)
self.assertAllClose(ax, bx, check_dtypes=False)
def testVmapOfPmapTuple(self):
device_count = xla_bridge.device_count()
f0 = lambda *x: x
f1 = pmap(f0, axis_name='i')
ax = np.random.randn(device_count, 2, 50, 60)
ay = np.random.randn(device_count, 30, 2)
az1 = np.random.randn(device_count, 20)
az2 = np.random.randn(2, device_count, 20)
bx, by, bz = vmap(f1, in_axes=(1, 2, (None, 0)), out_axes=(1, 2, 0))(ax, ay, (az1, az2))
self.assertAllClose(ax, bx, check_dtypes=False)
self.assertAllClose(ay, by, check_dtypes=False)
bz1, bz2 = bz
expected_bz1 = np.broadcast_to(az1, (2,) + az1.shape)
self.assertAllClose(expected_bz1, bz1, check_dtypes=False)
self.assertAllClose(bz2, bz2, check_dtypes=False)
2019-06-23 16:41:59 -07:00
@jtu.skip_on_devices("gpu")
2019-06-08 08:57:34 -07:00
def testPswapaxes(self):
device_count = xla_bridge.device_count()
# TODO: AllToAll not yet implemented on XLA:CPU
if jtu.device_under_test() == "cpu":
device_count = 1
2019-06-08 08:57:34 -07:00
shape = (device_count, 3, device_count, 5)
x = np.arange(prod(shape)).reshape(shape)
2019-06-08 08:57:34 -07:00
ans = pmap(lambda x: lax.pswapaxes(x, 'i', 1), axis_name='i')(x)
expected = np.swapaxes(x, 0, 2)
2019-06-08 08:57:34 -07:00
self.assertAllClose(ans, expected, check_dtypes=False)
Allow ShardedDeviceArrays to represent arbitrary data shardings. (#2142) This change introduces ShardingSpec, a struct describing how an array should be sharded. This is integrated into ShardedDeviceArray to allow more flexible sharding. It supports partitioning (both "pmap-style", where an entire axis is decomposed into separate shards and doesn't appear in the on-device shape at all, and "sharded_jit-style", where an axis is chunked into shards but remains in the on-device shape) and replication. This removes the need for ChunkedDeviceArray, since a ShardedDeviceArray can now represent chunks. Here are pmap_benchmark times showing that the overall effect of this change neutral to positive (integer indexing is much faster!). **pmap_shard_args** ``` ---------Benchmark summary for pmap_shard_args--------- nargs nshards mean %std relative mean/baseline ------- --------- --------- --------- ---------- --------------- 10 8 0.041855 4.15223 1 1.01466 100 8 0.129884 4.85321 3.1032 0.988543 101 8 0.136347 6.20233 3.2576 0.967138 500 8 0.533207 3.6815 12.7394 1.0294 1000 8 1.10338 0.525193 26.362 0.960435 5000 8 5.33911 0 127.562 0.963319 100 2 0.0638619 10.7069 1.52579 1.0362 100 4 0.0868253 6.76701 2.07443 0.967323 100 8 0.128151 6.46004 3.06177 0.979742 100 100 1.22631 1.94885 29.299 1.00371 100 500 6.60746 0 157.865 0.956657 ``` **pmap_shard_outputs** ``` nouts nshards mean %std relative mean/baseline ------- --------- ---------- --------- ---------- --------------- 10 8 0.0664526 9.49251 1 0.938466 100 8 0.195711 2.19429 2.94512 1.04239 500 8 0.82577 0.330864 12.4265 0.994669 1000 8 1.68323 1.0516 25.3298 0.966915 5000 8 8.89032 0 133.784 0.998038 100 2 0.074806 10.1734 1.12571 0.980254 100 4 0.121334 5.76774 1.82588 1.02033 100 8 0.185253 5.45068 2.78775 1.01666 100 100 2.37076 0 35.6759 1.08629 100 500 17.0832 0 257.074 0.976879 ``` **ShardedDeviceArray_indexing** ``` indices_fn mean %std relative mean/baseline ------------------ ---------- ------- ---------- --------------- integer_indices 0.0603473 8.29159 1 0.359496 integer_2D_indices 18.0241 0 298.672 1.00583 ``` This is how I ran the benchmark: ``` TARGET_TOTAL_SECS=2 CUDA_VISIBLE_DEVICES= XLA_FLAGS=--xla_force_host_platform_device_count=500 python3 benchmarks/pmap_benchmark.py --baseline_dir=<results as of a3cc9a7> ```
2020-04-15 12:43:55 -07:00
def testReshardInput(self):
if xla_bridge.device_count() < 6:
raise SkipTest("testReshardInput requires 6 devices")
# Manually construct a ShardedDeviceArray with the wrong sharding for the
# subsequent pmap
shard_shape = (3,2)
shard = jnp.arange(jnp.prod(shard_shape)).reshape(shard_shape)
Allow ShardedDeviceArrays to represent arbitrary data shardings. (#2142) This change introduces ShardingSpec, a struct describing how an array should be sharded. This is integrated into ShardedDeviceArray to allow more flexible sharding. It supports partitioning (both "pmap-style", where an entire axis is decomposed into separate shards and doesn't appear in the on-device shape at all, and "sharded_jit-style", where an axis is chunked into shards but remains in the on-device shape) and replication. This removes the need for ChunkedDeviceArray, since a ShardedDeviceArray can now represent chunks. Here are pmap_benchmark times showing that the overall effect of this change neutral to positive (integer indexing is much faster!). **pmap_shard_args** ``` ---------Benchmark summary for pmap_shard_args--------- nargs nshards mean %std relative mean/baseline ------- --------- --------- --------- ---------- --------------- 10 8 0.041855 4.15223 1 1.01466 100 8 0.129884 4.85321 3.1032 0.988543 101 8 0.136347 6.20233 3.2576 0.967138 500 8 0.533207 3.6815 12.7394 1.0294 1000 8 1.10338 0.525193 26.362 0.960435 5000 8 5.33911 0 127.562 0.963319 100 2 0.0638619 10.7069 1.52579 1.0362 100 4 0.0868253 6.76701 2.07443 0.967323 100 8 0.128151 6.46004 3.06177 0.979742 100 100 1.22631 1.94885 29.299 1.00371 100 500 6.60746 0 157.865 0.956657 ``` **pmap_shard_outputs** ``` nouts nshards mean %std relative mean/baseline ------- --------- ---------- --------- ---------- --------------- 10 8 0.0664526 9.49251 1 0.938466 100 8 0.195711 2.19429 2.94512 1.04239 500 8 0.82577 0.330864 12.4265 0.994669 1000 8 1.68323 1.0516 25.3298 0.966915 5000 8 8.89032 0 133.784 0.998038 100 2 0.074806 10.1734 1.12571 0.980254 100 4 0.121334 5.76774 1.82588 1.02033 100 8 0.185253 5.45068 2.78775 1.01666 100 100 2.37076 0 35.6759 1.08629 100 500 17.0832 0 257.074 0.976879 ``` **ShardedDeviceArray_indexing** ``` indices_fn mean %std relative mean/baseline ------------------ ---------- ------- ---------- --------------- integer_indices 0.0603473 8.29159 1 0.359496 integer_2D_indices 18.0241 0 298.672 1.00583 ``` This is how I ran the benchmark: ``` TARGET_TOTAL_SECS=2 CUDA_VISIBLE_DEVICES= XLA_FLAGS=--xla_force_host_platform_device_count=500 python3 benchmarks/pmap_benchmark.py --baseline_dir=<results as of a3cc9a7> ```
2020-04-15 12:43:55 -07:00
bufs = [xla.device_put(shard, d) for d in xla_bridge.devices()[:4]]
aval = ShapedArray((6,4), shard.dtype)
sharding_spec = pxla.ShardingSpec(
shards_per_axis=(2, 2),
is_axis_materialized=(True, True),
replication_factor=2)
arr = pxla.ShardedDeviceArray(aval, sharding_spec, bufs)
r = pmap(lambda x: x + 1)(arr)
self.assertAllClose(r, arr + 1, check_dtypes=True)
self.assertEqual(len(r.device_buffers), 6)
@ignore_soft_pmap_warning()
2019-06-23 16:41:59 -07:00
def testSoftPmapPsum(self):
n = 4 * xla_bridge.device_count()
def f(x):
return x / lax.psum(x, 'i')
ans = soft_pmap(f, 'i')(jnp.ones(n))
expected = np.ones(n) / n
2019-06-23 16:41:59 -07:00
self.assertAllClose(ans, expected, check_dtypes=False)
@ignore_soft_pmap_warning()
2019-06-23 16:41:59 -07:00
def testSoftPmapAxisIndex(self):
n = 4 * xla_bridge.device_count()
def f(x):
return x * lax.axis_index('i')
ans = soft_pmap(f, 'i')(2 * jnp.ones(n))
expected = 2 * np.arange(n)
2019-06-23 16:41:59 -07:00
self.assertAllClose(ans, expected, check_dtypes=False)
@ignore_soft_pmap_warning()
2019-06-23 16:41:59 -07:00
def testSoftPmapOfJit(self):
n = 4 * xla_bridge.device_count()
def f(x):
return 3 * x
ans = soft_pmap(jit(f), 'i')(np.arange(n))
expected = 3 * np.arange(n)
2019-06-23 16:41:59 -07:00
self.assertAllClose(ans, expected, check_dtypes=False)
@ignore_soft_pmap_warning()
2019-06-23 16:41:59 -07:00
def testSoftPmapNested(self):
n = 4 * xla_bridge.device_count()
@partial(soft_pmap, axis_name='i')
@partial(soft_pmap, axis_name='j')
def f(x):
i_size = lax.psum(1, 'i')
return x + lax.axis_index('i') + i_size * lax.axis_index('j')
ans = f(jnp.zeros((n, n)))
expected = np.arange(n ** 2).reshape(n, n).T
2019-06-23 16:41:59 -07:00
self.assertAllClose(ans, expected, check_dtypes=False)
@ignore_soft_pmap_warning()
2019-06-23 16:41:59 -07:00
def testGradOfSoftPmap(self):
n = 4 * xla_bridge.device_count()
@partial(soft_pmap, axis_name='i')
def f(x):
return x * lax.axis_index('i')
ans = grad(lambda x: jnp.sum(f(x)))(jnp.zeros((n, n)))
expected = np.repeat(np.arange(n)[:, None], n, axis=1)
2019-06-23 16:41:59 -07:00
self.assertAllClose(ans, expected, check_dtypes=False)
@ignore_soft_pmap_warning()
2019-07-06 10:00:08 -07:00
def testSoftPmapDevicePersistence(self):
device_count = xla_bridge.device_count()
shape = (2 * 2 * device_count, 2, 3)
# check that we can maintain device persistence across calls
x = np.arange(prod(shape)).reshape(shape)
2019-07-06 10:00:08 -07:00
x = soft_pmap(lambda x: x)(x)
Allow ShardedDeviceArrays to represent arbitrary data shardings. (#2142) This change introduces ShardingSpec, a struct describing how an array should be sharded. This is integrated into ShardedDeviceArray to allow more flexible sharding. It supports partitioning (both "pmap-style", where an entire axis is decomposed into separate shards and doesn't appear in the on-device shape at all, and "sharded_jit-style", where an axis is chunked into shards but remains in the on-device shape) and replication. This removes the need for ChunkedDeviceArray, since a ShardedDeviceArray can now represent chunks. Here are pmap_benchmark times showing that the overall effect of this change neutral to positive (integer indexing is much faster!). **pmap_shard_args** ``` ---------Benchmark summary for pmap_shard_args--------- nargs nshards mean %std relative mean/baseline ------- --------- --------- --------- ---------- --------------- 10 8 0.041855 4.15223 1 1.01466 100 8 0.129884 4.85321 3.1032 0.988543 101 8 0.136347 6.20233 3.2576 0.967138 500 8 0.533207 3.6815 12.7394 1.0294 1000 8 1.10338 0.525193 26.362 0.960435 5000 8 5.33911 0 127.562 0.963319 100 2 0.0638619 10.7069 1.52579 1.0362 100 4 0.0868253 6.76701 2.07443 0.967323 100 8 0.128151 6.46004 3.06177 0.979742 100 100 1.22631 1.94885 29.299 1.00371 100 500 6.60746 0 157.865 0.956657 ``` **pmap_shard_outputs** ``` nouts nshards mean %std relative mean/baseline ------- --------- ---------- --------- ---------- --------------- 10 8 0.0664526 9.49251 1 0.938466 100 8 0.195711 2.19429 2.94512 1.04239 500 8 0.82577 0.330864 12.4265 0.994669 1000 8 1.68323 1.0516 25.3298 0.966915 5000 8 8.89032 0 133.784 0.998038 100 2 0.074806 10.1734 1.12571 0.980254 100 4 0.121334 5.76774 1.82588 1.02033 100 8 0.185253 5.45068 2.78775 1.01666 100 100 2.37076 0 35.6759 1.08629 100 500 17.0832 0 257.074 0.976879 ``` **ShardedDeviceArray_indexing** ``` indices_fn mean %std relative mean/baseline ------------------ ---------- ------- ---------- --------------- integer_indices 0.0603473 8.29159 1 0.359496 integer_2D_indices 18.0241 0 298.672 1.00583 ``` This is how I ran the benchmark: ``` TARGET_TOTAL_SECS=2 CUDA_VISIBLE_DEVICES= XLA_FLAGS=--xla_force_host_platform_device_count=500 python3 benchmarks/pmap_benchmark.py --baseline_dir=<results as of a3cc9a7> ```
2020-04-15 12:43:55 -07:00
self.assertIsInstance(x, pxla.ShardedDeviceArray)
x._npy_value = np.float32(np.nan) # can't be coerced to ndarray for xfer
2019-07-06 10:00:08 -07:00
x = soft_pmap(lambda x: x)(x) # doesn't crash
Allow ShardedDeviceArrays to represent arbitrary data shardings. (#2142) This change introduces ShardingSpec, a struct describing how an array should be sharded. This is integrated into ShardedDeviceArray to allow more flexible sharding. It supports partitioning (both "pmap-style", where an entire axis is decomposed into separate shards and doesn't appear in the on-device shape at all, and "sharded_jit-style", where an axis is chunked into shards but remains in the on-device shape) and replication. This removes the need for ChunkedDeviceArray, since a ShardedDeviceArray can now represent chunks. Here are pmap_benchmark times showing that the overall effect of this change neutral to positive (integer indexing is much faster!). **pmap_shard_args** ``` ---------Benchmark summary for pmap_shard_args--------- nargs nshards mean %std relative mean/baseline ------- --------- --------- --------- ---------- --------------- 10 8 0.041855 4.15223 1 1.01466 100 8 0.129884 4.85321 3.1032 0.988543 101 8 0.136347 6.20233 3.2576 0.967138 500 8 0.533207 3.6815 12.7394 1.0294 1000 8 1.10338 0.525193 26.362 0.960435 5000 8 5.33911 0 127.562 0.963319 100 2 0.0638619 10.7069 1.52579 1.0362 100 4 0.0868253 6.76701 2.07443 0.967323 100 8 0.128151 6.46004 3.06177 0.979742 100 100 1.22631 1.94885 29.299 1.00371 100 500 6.60746 0 157.865 0.956657 ``` **pmap_shard_outputs** ``` nouts nshards mean %std relative mean/baseline ------- --------- ---------- --------- ---------- --------------- 10 8 0.0664526 9.49251 1 0.938466 100 8 0.195711 2.19429 2.94512 1.04239 500 8 0.82577 0.330864 12.4265 0.994669 1000 8 1.68323 1.0516 25.3298 0.966915 5000 8 8.89032 0 133.784 0.998038 100 2 0.074806 10.1734 1.12571 0.980254 100 4 0.121334 5.76774 1.82588 1.02033 100 8 0.185253 5.45068 2.78775 1.01666 100 100 2.37076 0 35.6759 1.08629 100 500 17.0832 0 257.074 0.976879 ``` **ShardedDeviceArray_indexing** ``` indices_fn mean %std relative mean/baseline ------------------ ---------- ------- ---------- --------------- integer_indices 0.0603473 8.29159 1 0.359496 integer_2D_indices 18.0241 0 298.672 1.00583 ``` This is how I ran the benchmark: ``` TARGET_TOTAL_SECS=2 CUDA_VISIBLE_DEVICES= XLA_FLAGS=--xla_force_host_platform_device_count=500 python3 benchmarks/pmap_benchmark.py --baseline_dir=<results as of a3cc9a7> ```
2020-04-15 12:43:55 -07:00
self.assertIsInstance(x, pxla.ShardedDeviceArray)
2019-07-06 10:00:08 -07:00
# check that we don't crash when we can't maintain device persistence
x = np.arange(prod(shape)).reshape(shape)
2019-07-06 10:00:08 -07:00
x = soft_pmap(lambda x: x)(x)
Allow ShardedDeviceArrays to represent arbitrary data shardings. (#2142) This change introduces ShardingSpec, a struct describing how an array should be sharded. This is integrated into ShardedDeviceArray to allow more flexible sharding. It supports partitioning (both "pmap-style", where an entire axis is decomposed into separate shards and doesn't appear in the on-device shape at all, and "sharded_jit-style", where an axis is chunked into shards but remains in the on-device shape) and replication. This removes the need for ChunkedDeviceArray, since a ShardedDeviceArray can now represent chunks. Here are pmap_benchmark times showing that the overall effect of this change neutral to positive (integer indexing is much faster!). **pmap_shard_args** ``` ---------Benchmark summary for pmap_shard_args--------- nargs nshards mean %std relative mean/baseline ------- --------- --------- --------- ---------- --------------- 10 8 0.041855 4.15223 1 1.01466 100 8 0.129884 4.85321 3.1032 0.988543 101 8 0.136347 6.20233 3.2576 0.967138 500 8 0.533207 3.6815 12.7394 1.0294 1000 8 1.10338 0.525193 26.362 0.960435 5000 8 5.33911 0 127.562 0.963319 100 2 0.0638619 10.7069 1.52579 1.0362 100 4 0.0868253 6.76701 2.07443 0.967323 100 8 0.128151 6.46004 3.06177 0.979742 100 100 1.22631 1.94885 29.299 1.00371 100 500 6.60746 0 157.865 0.956657 ``` **pmap_shard_outputs** ``` nouts nshards mean %std relative mean/baseline ------- --------- ---------- --------- ---------- --------------- 10 8 0.0664526 9.49251 1 0.938466 100 8 0.195711 2.19429 2.94512 1.04239 500 8 0.82577 0.330864 12.4265 0.994669 1000 8 1.68323 1.0516 25.3298 0.966915 5000 8 8.89032 0 133.784 0.998038 100 2 0.074806 10.1734 1.12571 0.980254 100 4 0.121334 5.76774 1.82588 1.02033 100 8 0.185253 5.45068 2.78775 1.01666 100 100 2.37076 0 35.6759 1.08629 100 500 17.0832 0 257.074 0.976879 ``` **ShardedDeviceArray_indexing** ``` indices_fn mean %std relative mean/baseline ------------------ ---------- ------- ---------- --------------- integer_indices 0.0603473 8.29159 1 0.359496 integer_2D_indices 18.0241 0 298.672 1.00583 ``` This is how I ran the benchmark: ``` TARGET_TOTAL_SECS=2 CUDA_VISIBLE_DEVICES= XLA_FLAGS=--xla_force_host_platform_device_count=500 python3 benchmarks/pmap_benchmark.py --baseline_dir=<results as of a3cc9a7> ```
2020-04-15 12:43:55 -07:00
self.assertIsInstance(x, pxla.ShardedDeviceArray)
2019-07-06 10:00:08 -07:00
y = x.reshape(device_count, -1)
self.assertIsInstance(y, xla.DeviceArray) # should have forced collection
soft_pmap(lambda x: x)(y) # doesn't crash
z = x + 2
self.assertIsInstance(z, xla.DeviceArray) # should have forced collection
x._npy_value = np.float32(np.nan) # can't be coerced to ndarray for xfer
self.assertRaisesRegex(
2019-07-06 10:00:08 -07:00
RuntimeError,
'.*does not match host shape or layout of computation parameter 0.*',
lambda: x + 2)
# check that different axis merges aren't a problem
x = np.arange(prod(shape)).reshape(shape)
2019-07-06 10:00:08 -07:00
x = soft_pmap(lambda x: x)(x)
Allow ShardedDeviceArrays to represent arbitrary data shardings. (#2142) This change introduces ShardingSpec, a struct describing how an array should be sharded. This is integrated into ShardedDeviceArray to allow more flexible sharding. It supports partitioning (both "pmap-style", where an entire axis is decomposed into separate shards and doesn't appear in the on-device shape at all, and "sharded_jit-style", where an axis is chunked into shards but remains in the on-device shape) and replication. This removes the need for ChunkedDeviceArray, since a ShardedDeviceArray can now represent chunks. Here are pmap_benchmark times showing that the overall effect of this change neutral to positive (integer indexing is much faster!). **pmap_shard_args** ``` ---------Benchmark summary for pmap_shard_args--------- nargs nshards mean %std relative mean/baseline ------- --------- --------- --------- ---------- --------------- 10 8 0.041855 4.15223 1 1.01466 100 8 0.129884 4.85321 3.1032 0.988543 101 8 0.136347 6.20233 3.2576 0.967138 500 8 0.533207 3.6815 12.7394 1.0294 1000 8 1.10338 0.525193 26.362 0.960435 5000 8 5.33911 0 127.562 0.963319 100 2 0.0638619 10.7069 1.52579 1.0362 100 4 0.0868253 6.76701 2.07443 0.967323 100 8 0.128151 6.46004 3.06177 0.979742 100 100 1.22631 1.94885 29.299 1.00371 100 500 6.60746 0 157.865 0.956657 ``` **pmap_shard_outputs** ``` nouts nshards mean %std relative mean/baseline ------- --------- ---------- --------- ---------- --------------- 10 8 0.0664526 9.49251 1 0.938466 100 8 0.195711 2.19429 2.94512 1.04239 500 8 0.82577 0.330864 12.4265 0.994669 1000 8 1.68323 1.0516 25.3298 0.966915 5000 8 8.89032 0 133.784 0.998038 100 2 0.074806 10.1734 1.12571 0.980254 100 4 0.121334 5.76774 1.82588 1.02033 100 8 0.185253 5.45068 2.78775 1.01666 100 100 2.37076 0 35.6759 1.08629 100 500 17.0832 0 257.074 0.976879 ``` **ShardedDeviceArray_indexing** ``` indices_fn mean %std relative mean/baseline ------------------ ---------- ------- ---------- --------------- integer_indices 0.0603473 8.29159 1 0.359496 integer_2D_indices 18.0241 0 298.672 1.00583 ``` This is how I ran the benchmark: ``` TARGET_TOTAL_SECS=2 CUDA_VISIBLE_DEVICES= XLA_FLAGS=--xla_force_host_platform_device_count=500 python3 benchmarks/pmap_benchmark.py --baseline_dir=<results as of a3cc9a7> ```
2020-04-15 12:43:55 -07:00
self.assertIsInstance(x, pxla.ShardedDeviceArray)
2019-07-06 10:00:08 -07:00
x = x.reshape(2 * device_count, 2, 2, 3) # axis merge of the wrong size
self.assertIsInstance(x, xla.DeviceArray) # should have forced collection
handle mapped_invars correctly in more places (#2828) fixes #2822 We didn't handle `pmap`'s `mapped_invars` correctly in all places in #1959. (I'm actually not sure if #1959 introduced the bug where things were working before, or just refactored it in terms of `mapped_invars`, though my guess is that because the information now contained in `mapped_invars` was implicitly contained in the pmapped jaxpr's `constvars` and `env_vars` that it was working correctly before #1959.) In particular, in #1959 we: 1. assumed the `mapped_invars` parameter of xla_pmap_p was only populated after partial_eval and set to None otherwise (i.e. staging out for a jit or a control flow primitive), 2. didn't update it correctly in JVPTrace.process_map (which adds new inputs corresponding to nonzero tangents, and hence `mapped_invars` must be grown), 3. didn't update it correctly in JaxprTrace.process_map (which adds residual inputs to the staged-out version of the primitive), 4. didn't forward it correctly in JaxprTrace.process_map anyway (we were setting it to all-true for the staged out eqn for all tracers regardless of what the original `mapped_invars` said), 5. removed the leading axes of all pvs in JaxprTrace.process_map regardless of whether the corresponding entry of `mapped_invars` was True or False. The reason we didn't notice 2 and 3 was that they only arise when doing control flow (e.g. scan or remat) of pmap involving closed-over tracers (apparently a rare case), since that's the case where we first form a jaxpr (populating `mapped_invars`) and then later have to apply transformations like AD and further partial eval (thus engaging JVPTrace.process_map and JaxprTrace.process_map with a populated `mapped_invars` parameter). It worked in other cases, e.g. when the pmap was not inside control flow or a remat, because in those cases we left `mapped_invars` set to None, indicating all-true of any length (so it didn't matter if we add inputs). This commit fixes those issues by 1. making `mapped_invars` non-optional, 2. handling `mapped_invars` correctly in * JaxprTrace.process_map * JVPTrace.process_map * ad.map_transpose (since having symbolic-zero cotangents effectively prunes inputs, and having undefined-primal args also prunes inputs) * ad._eval_subjaxpr_primals (since having undefined-primal args prunes inputs) 3. making the separate cases of calls and maps handled more explicitly by adding a new Primitive.map_primitive boolean attribute (analogous to Primitive.call_primitive), to be revised further in #2829. This is begging for a more coherent cleanup. For example, we reuse the same Primitive class but tag it with `call_primitive` or `map_primitive` (only one of which can be True); we should instead just have a separate Primitive class for these cases and track the type tag with built-in Python mechanisms. Moreover, when `call_primitive=True` or `map_primitive=True` implies things about what `params` must be present (`call_jaxpr` and `mapped_invars`). I plan to follow up with those cleanups in #2829, but I wanted to get something working first.
2020-04-24 18:45:34 -07:00
def testSoftPmapAllToAll(self):
raise SkipTest("the underlying code here is broken") # TODO(mattjj)
2019-06-23 16:41:59 -07:00
n = 4 * xla_bridge.device_count()
def f(x):
return lax.all_to_all(x, 'i', 0, 0)
ans = soft_pmap(f, 'i')(jnp.arange(n ** 2).reshape(n, n))
expected = np.arange(n ** 2).reshape(n, n).T
2019-06-23 16:41:59 -07:00
self.assertAllClose(ans, expected, check_dtypes=False)
def testShardedDeviceArrayBlockUntilReady(self):
x = np.arange(xla_bridge.device_count())
x = pmap(lambda x: x)(x)
x.block_until_ready() # doesn't crash
enable jit+pmap by merging pxla.py and xla.py This change is essentially de-duplicating the XLA lowering logic between xla.py and pxla.py. Only the latter was capable of handling collectives (aka pmap primitives), which meant that these didn't work: 1. some compositions of jit and pmap, like jit-of-pmap 2. collectives inside initial-style control flow like scan 3. jax.xla_computation on a function involving collectives By merging the logic into xla.py, now all the lowering machinery works with everything. Woo! The pxla.py file still exists and contains mostly dynamic/runtime components for pmap and functions used only by pmap and collectives translations. In particular, pxla.py has * the pmap impl, particularly the dispatching logic for top-level pmaps, including argument sharding and lazy sharded result persistence * the ShardedDeviceArray / ShardedDeviceTuple classes * the dynamic (trace-time) axis environment data structures and logic and the special axis_index primitive * the split-axis transformation for soft_pmap * the PmapPrimitive (just a tagged version of Primitive) * the static sharding/unsharding logic for pmap-inside-jit/pmap These things moved over to xla.py * the logic for lowering pmap primitives, especially the static axis environment used during xla lowering This change refactors the translation rule tables a bit. Instead of just having one table, there are now four, and they contain rules with slightly different type signatures: * the `translations` table has rules with the same signatures as always, i.e. `CompBuilder -> [XlaOperands] -> ParamsDict -> XlaOperandOut` * the `backend_specific_translations` table is keyed by platform name strings and has dict values that each have the same type as `translations` * the `parallel_translations` table is used for primitives modeling parallel collectives, and so it has rules with signature `CompBuilder -> [XlaOperands] -> ReplicaGroups -> ParamsDict -> XlaOpOut` * the `initial_style_translations` table is for the initial-style control flow primitives (like `scan`), for which the translation rules themselves lower jaxprs to XLA computations and thus require the static axis env to be passed in; the rules there have signature `CompBuilder -> AxisEnv -> [XlaOperands] -> ParamsDict -> XlaOpOut` * the `call_translations` table is sued for `xla_call` and `xla_pmap`, i.e. the primitives underlying `jit` and `pmap` respectively, and has rules with signature `CompBuilder -> Jaxpr -> AxisEnv -> [XlaOp] -> [XlaOp] -> ParamsDict -> XlaOp` Having these as separate tables is an uninteresting implementation detail. The lowering function `_jaxpr_computation` just does a case analysis on whether the primitive being translated has an entry in any table (where the `backend_specific_translations` table must be checked before the `translations` table, since some primitives may be entered in both). This change fixes #804 also addresses #852, in that the lax control flow impls for those primitives are now based on Python-level jaxpr interpreters rather than XLA compilation, but we should probably wait to close the latter issue until we benchmark and improve things more. This change at least seems not to be a performance regression: on my machine the lax control flow tests go from running in ~20s to running in ~14s. This change also adds a docstring for `jax.xla_computation` and some basic tests.
2019-07-02 13:17:31 -07:00
def testJitPmapComposition(self):
f = lambda x: x - lax.psum(x, 'i')
shape = (xla_bridge.device_count(), 4)
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
expected = x - np.sum(x, 0)
enable jit+pmap by merging pxla.py and xla.py This change is essentially de-duplicating the XLA lowering logic between xla.py and pxla.py. Only the latter was capable of handling collectives (aka pmap primitives), which meant that these didn't work: 1. some compositions of jit and pmap, like jit-of-pmap 2. collectives inside initial-style control flow like scan 3. jax.xla_computation on a function involving collectives By merging the logic into xla.py, now all the lowering machinery works with everything. Woo! The pxla.py file still exists and contains mostly dynamic/runtime components for pmap and functions used only by pmap and collectives translations. In particular, pxla.py has * the pmap impl, particularly the dispatching logic for top-level pmaps, including argument sharding and lazy sharded result persistence * the ShardedDeviceArray / ShardedDeviceTuple classes * the dynamic (trace-time) axis environment data structures and logic and the special axis_index primitive * the split-axis transformation for soft_pmap * the PmapPrimitive (just a tagged version of Primitive) * the static sharding/unsharding logic for pmap-inside-jit/pmap These things moved over to xla.py * the logic for lowering pmap primitives, especially the static axis environment used during xla lowering This change refactors the translation rule tables a bit. Instead of just having one table, there are now four, and they contain rules with slightly different type signatures: * the `translations` table has rules with the same signatures as always, i.e. `CompBuilder -> [XlaOperands] -> ParamsDict -> XlaOperandOut` * the `backend_specific_translations` table is keyed by platform name strings and has dict values that each have the same type as `translations` * the `parallel_translations` table is used for primitives modeling parallel collectives, and so it has rules with signature `CompBuilder -> [XlaOperands] -> ReplicaGroups -> ParamsDict -> XlaOpOut` * the `initial_style_translations` table is for the initial-style control flow primitives (like `scan`), for which the translation rules themselves lower jaxprs to XLA computations and thus require the static axis env to be passed in; the rules there have signature `CompBuilder -> AxisEnv -> [XlaOperands] -> ParamsDict -> XlaOpOut` * the `call_translations` table is sued for `xla_call` and `xla_pmap`, i.e. the primitives underlying `jit` and `pmap` respectively, and has rules with signature `CompBuilder -> Jaxpr -> AxisEnv -> [XlaOp] -> [XlaOp] -> ParamsDict -> XlaOp` Having these as separate tables is an uninteresting implementation detail. The lowering function `_jaxpr_computation` just does a case analysis on whether the primitive being translated has an entry in any table (where the `backend_specific_translations` table must be checked before the `translations` table, since some primitives may be entered in both). This change fixes #804 also addresses #852, in that the lax control flow impls for those primitives are now based on Python-level jaxpr interpreters rather than XLA compilation, but we should probably wait to close the latter issue until we benchmark and improve things more. This change at least seems not to be a performance regression: on my machine the lax control flow tests go from running in ~20s to running in ~14s. This change also adds a docstring for `jax.xla_computation` and some basic tests.
2019-07-02 13:17:31 -07:00
ans = jit(pmap(f, 'i'))(x)
self.assertAllClose(ans, expected, check_dtypes=False)
ans = pmap(jit(f), 'i')(x)
self.assertAllClose(ans, expected, check_dtypes=False)
def testMakeJaxprOfOpenSpmd(self):
f = lambda x: x - lax.psum(x, 'i')
shape = (xla_bridge.device_count(), 4)
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
make_jaxpr(f)(x) # doesn't crash
def testCompositionWithJitTwice(self):
@jit
def f(x):
y = 2 * x
@jit
def g(z):
return pmap(lambda x: x * y)(z)
return g(x)
f(np.arange(1.).reshape((1, 1))) # doesn't crash
def testIssue1065(self):
# from https://github.com/google/jax/issues/1065
device_count = xla_bridge.device_count()
def multi_step_pmap(state, count):
@partial(pmap, axis_name='x')
@jit
def exchange_and_multi_step(state):
return state
@jit
def time_evolution(state):
return lax.fori_loop(0, count, lambda i, s: exchange_and_multi_step(s), state)
return time_evolution(state)
multi_step_pmap(jnp.zeros((device_count,)), count=1)
2019-08-21 16:39:59 -07:00
def testShardedDeviceArrayGetItem(self):
f = lambda x: 2 * x
f = pmap(f, axis_name='i')
shape = (xla_bridge.device_count(), 4)
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
2019-08-21 16:39:59 -07:00
y = f(x)
self.assertIsInstance(y, jnp.ndarray)
2019-08-21 16:39:59 -07:00
self.assertIsInstance(y, pxla.ShardedDeviceArray)
z = y[0] # doesn't crash
self.assertAllClose(z, 2 * x[0], check_dtypes=False)
2019-08-21 16:39:59 -07:00
def testPostProcessMap(self):
2019-09-20 20:45:01 -07:00
# TODO(mattjj): this fails with multiple devices (unless we add a jit)
# because we assume eager ops (like scan here) can't require more than 1
# replica.
raise SkipTest("need eager multi-replica support")
# test came from https://github.com/google/jax/issues/1369
nrep = xla_bridge.device_count()
def pmvm(a, b):
a = a.reshape((nrep, -1, a.shape[1]))
func = pmap(lambda z: jnp.dot(z, b))
return func(a).reshape(b.shape)
2019-09-20 20:45:01 -07:00
n = nrep * 2
rng = np.random.RandomState(0)
2019-09-20 20:45:01 -07:00
a = rng.randn(n, n)
b = rng.randn(n)
iters = jnp.arange(5)
def body(carry, i):
return pmvm(a, carry), i
ans, _ = lax.scan(body, b, iters)
expected = np.linalg.matrix_power(a, 5).dot(b)
self.assertAllClose(ans, expected, check_dtypes=False)
def testManyArgs(self):
@pmap
def f(args_list):
return sum(args_list)
vals = list(range(500))
ndevices = xla_bridge.device_count()
self.assertAllClose(f(jnp.array([vals] * ndevices)),
jnp.array([sum(vals)] * ndevices),
check_dtypes=True)
def testPostProcessMap(self):
# code from https://github.com/google/jax/issues/2787
def vv(x, y):
"""Vector-vector multiply"""
return jnp.dot(x, y)
def distributed_matrix_vector(x, y):
"""Matrix vector multiply. First batch it and then row by row"""
fv = lambda z: lax.map(lambda j: vv(j, y), z)
res = pmap(fv)(x.reshape((jax.device_count(), -1) + tuple(x.shape[1:])))
res = res.reshape(res.shape[0] * res.shape[1], *res.shape[2:])
return res
key = random.PRNGKey(1)
2020-04-21 18:27:53 -07:00
x = random.normal(key, (80, 50))
batched_mvm = vmap(lambda b: distributed_matrix_vector(x, b), in_axes=0)
y = random.normal(key, (10, 50, 1))
result = batched_mvm(y)
expected = jnp.einsum('ij,njk->nik', x, y)
2020-04-21 18:27:53 -07:00
tol = 1e-1 if jtu.device_under_test() == "tpu" else 1e-3
self.assertAllClose(result, expected, check_dtypes=False, atol=tol, rtol=tol)
def testAxisIndexRemat(self):
# https://github.com/google/jax/issues/2716
n = len(jax.devices())
def f(key):
key = random.fold_in(key, jax.lax.axis_index('i'))
return random.bernoulli(key, p=0.5)
keys = random.split(random.PRNGKey(0), n)
jax.pmap(jax.remat(f), axis_name='i')(keys)
handle mapped_invars correctly in more places (#2828) fixes #2822 We didn't handle `pmap`'s `mapped_invars` correctly in all places in #1959. (I'm actually not sure if #1959 introduced the bug where things were working before, or just refactored it in terms of `mapped_invars`, though my guess is that because the information now contained in `mapped_invars` was implicitly contained in the pmapped jaxpr's `constvars` and `env_vars` that it was working correctly before #1959.) In particular, in #1959 we: 1. assumed the `mapped_invars` parameter of xla_pmap_p was only populated after partial_eval and set to None otherwise (i.e. staging out for a jit or a control flow primitive), 2. didn't update it correctly in JVPTrace.process_map (which adds new inputs corresponding to nonzero tangents, and hence `mapped_invars` must be grown), 3. didn't update it correctly in JaxprTrace.process_map (which adds residual inputs to the staged-out version of the primitive), 4. didn't forward it correctly in JaxprTrace.process_map anyway (we were setting it to all-true for the staged out eqn for all tracers regardless of what the original `mapped_invars` said), 5. removed the leading axes of all pvs in JaxprTrace.process_map regardless of whether the corresponding entry of `mapped_invars` was True or False. The reason we didn't notice 2 and 3 was that they only arise when doing control flow (e.g. scan or remat) of pmap involving closed-over tracers (apparently a rare case), since that's the case where we first form a jaxpr (populating `mapped_invars`) and then later have to apply transformations like AD and further partial eval (thus engaging JVPTrace.process_map and JaxprTrace.process_map with a populated `mapped_invars` parameter). It worked in other cases, e.g. when the pmap was not inside control flow or a remat, because in those cases we left `mapped_invars` set to None, indicating all-true of any length (so it didn't matter if we add inputs). This commit fixes those issues by 1. making `mapped_invars` non-optional, 2. handling `mapped_invars` correctly in * JaxprTrace.process_map * JVPTrace.process_map * ad.map_transpose (since having symbolic-zero cotangents effectively prunes inputs, and having undefined-primal args also prunes inputs) * ad._eval_subjaxpr_primals (since having undefined-primal args prunes inputs) 3. making the separate cases of calls and maps handled more explicitly by adding a new Primitive.map_primitive boolean attribute (analogous to Primitive.call_primitive), to be revised further in #2829. This is begging for a more coherent cleanup. For example, we reuse the same Primitive class but tag it with `call_primitive` or `map_primitive` (only one of which can be True); we should instead just have a separate Primitive class for these cases and track the type tag with built-in Python mechanisms. Moreover, when `call_primitive=True` or `map_primitive=True` implies things about what `params` must be present (`call_jaxpr` and `mapped_invars`). I plan to follow up with those cleanups in #2829, but I wanted to get something working first.
2020-04-24 18:45:34 -07:00
def testPmapMapVmapCombinations(self):
# https://github.com/google/jax/issues/2822
def vv(x, y):
"""Vector-vector multiply"""
return jnp.dot(x, y)
handle mapped_invars correctly in more places (#2828) fixes #2822 We didn't handle `pmap`'s `mapped_invars` correctly in all places in #1959. (I'm actually not sure if #1959 introduced the bug where things were working before, or just refactored it in terms of `mapped_invars`, though my guess is that because the information now contained in `mapped_invars` was implicitly contained in the pmapped jaxpr's `constvars` and `env_vars` that it was working correctly before #1959.) In particular, in #1959 we: 1. assumed the `mapped_invars` parameter of xla_pmap_p was only populated after partial_eval and set to None otherwise (i.e. staging out for a jit or a control flow primitive), 2. didn't update it correctly in JVPTrace.process_map (which adds new inputs corresponding to nonzero tangents, and hence `mapped_invars` must be grown), 3. didn't update it correctly in JaxprTrace.process_map (which adds residual inputs to the staged-out version of the primitive), 4. didn't forward it correctly in JaxprTrace.process_map anyway (we were setting it to all-true for the staged out eqn for all tracers regardless of what the original `mapped_invars` said), 5. removed the leading axes of all pvs in JaxprTrace.process_map regardless of whether the corresponding entry of `mapped_invars` was True or False. The reason we didn't notice 2 and 3 was that they only arise when doing control flow (e.g. scan or remat) of pmap involving closed-over tracers (apparently a rare case), since that's the case where we first form a jaxpr (populating `mapped_invars`) and then later have to apply transformations like AD and further partial eval (thus engaging JVPTrace.process_map and JaxprTrace.process_map with a populated `mapped_invars` parameter). It worked in other cases, e.g. when the pmap was not inside control flow or a remat, because in those cases we left `mapped_invars` set to None, indicating all-true of any length (so it didn't matter if we add inputs). This commit fixes those issues by 1. making `mapped_invars` non-optional, 2. handling `mapped_invars` correctly in * JaxprTrace.process_map * JVPTrace.process_map * ad.map_transpose (since having symbolic-zero cotangents effectively prunes inputs, and having undefined-primal args also prunes inputs) * ad._eval_subjaxpr_primals (since having undefined-primal args prunes inputs) 3. making the separate cases of calls and maps handled more explicitly by adding a new Primitive.map_primitive boolean attribute (analogous to Primitive.call_primitive), to be revised further in #2829. This is begging for a more coherent cleanup. For example, we reuse the same Primitive class but tag it with `call_primitive` or `map_primitive` (only one of which can be True); we should instead just have a separate Primitive class for these cases and track the type tag with built-in Python mechanisms. Moreover, when `call_primitive=True` or `map_primitive=True` implies things about what `params` must be present (`call_jaxpr` and `mapped_invars`). I plan to follow up with those cleanups in #2829, but I wanted to get something working first.
2020-04-24 18:45:34 -07:00
def matrix_vector(x, y, parallel=True):
"""Matrix vector multiply. First batch it and then row by row"""
fv = lambda z: lax.map(lambda j: vv(j, y), z)
if parallel:
# split leading axis in two
new_x = x.reshape((jax.device_count(), -1, *x.shape[1:]))
# apply map
new_res = pmap(fv)(new_x)
# reshape back out
res = new_res.reshape(x.shape[0], *new_res.shape[2:])
else:
res = fv(x)
return res
x = random.normal(random.PRNGKey(1), (80, 5))
y = random.normal(random.PRNGKey(1), (10, 5))
result1 = vmap(lambda b: matrix_vector(x, b, True))(y) # vmap + pmap
result2 = lax.map(lambda b: matrix_vector(x, b, False), y) # map + map
result3 = lax.map(lambda b: matrix_vector(x, b, True), y) # map + pmap
result4 = jnp.stack([matrix_vector(x, b, False) for b in y]) # none + map
handle mapped_invars correctly in more places (#2828) fixes #2822 We didn't handle `pmap`'s `mapped_invars` correctly in all places in #1959. (I'm actually not sure if #1959 introduced the bug where things were working before, or just refactored it in terms of `mapped_invars`, though my guess is that because the information now contained in `mapped_invars` was implicitly contained in the pmapped jaxpr's `constvars` and `env_vars` that it was working correctly before #1959.) In particular, in #1959 we: 1. assumed the `mapped_invars` parameter of xla_pmap_p was only populated after partial_eval and set to None otherwise (i.e. staging out for a jit or a control flow primitive), 2. didn't update it correctly in JVPTrace.process_map (which adds new inputs corresponding to nonzero tangents, and hence `mapped_invars` must be grown), 3. didn't update it correctly in JaxprTrace.process_map (which adds residual inputs to the staged-out version of the primitive), 4. didn't forward it correctly in JaxprTrace.process_map anyway (we were setting it to all-true for the staged out eqn for all tracers regardless of what the original `mapped_invars` said), 5. removed the leading axes of all pvs in JaxprTrace.process_map regardless of whether the corresponding entry of `mapped_invars` was True or False. The reason we didn't notice 2 and 3 was that they only arise when doing control flow (e.g. scan or remat) of pmap involving closed-over tracers (apparently a rare case), since that's the case where we first form a jaxpr (populating `mapped_invars`) and then later have to apply transformations like AD and further partial eval (thus engaging JVPTrace.process_map and JaxprTrace.process_map with a populated `mapped_invars` parameter). It worked in other cases, e.g. when the pmap was not inside control flow or a remat, because in those cases we left `mapped_invars` set to None, indicating all-true of any length (so it didn't matter if we add inputs). This commit fixes those issues by 1. making `mapped_invars` non-optional, 2. handling `mapped_invars` correctly in * JaxprTrace.process_map * JVPTrace.process_map * ad.map_transpose (since having symbolic-zero cotangents effectively prunes inputs, and having undefined-primal args also prunes inputs) * ad._eval_subjaxpr_primals (since having undefined-primal args prunes inputs) 3. making the separate cases of calls and maps handled more explicitly by adding a new Primitive.map_primitive boolean attribute (analogous to Primitive.call_primitive), to be revised further in #2829. This is begging for a more coherent cleanup. For example, we reuse the same Primitive class but tag it with `call_primitive` or `map_primitive` (only one of which can be True); we should instead just have a separate Primitive class for these cases and track the type tag with built-in Python mechanisms. Moreover, when `call_primitive=True` or `map_primitive=True` implies things about what `params` must be present (`call_jaxpr` and `mapped_invars`). I plan to follow up with those cleanups in #2829, but I wanted to get something working first.
2020-04-24 18:45:34 -07:00
self.assertAllClose(result1, result2, check_dtypes=False, atol=1e-3, rtol=1e-3)
self.assertAllClose(result1, result3, check_dtypes=False, atol=1e-3, rtol=1e-3)
self.assertAllClose(result1, result4, check_dtypes=False, atol=1e-3, rtol=1e-3)
def testPsumOnBooleanDtype(self):
# https://github.com/google/jax/issues/3123
n = xla_bridge.device_count()
if n > 1:
x = jnp.array([True, False])
out = pmap(lambda x: jax.lax.psum(x, 'i'), 'i')(x)
self.assertEqual(list(out), [1, 1])
out = pmap(lambda x: jax.lax.pmean(x, 'i'), 'i')(x)
self.assertEqual(list(out), [1/2, 1/2])
else:
x = jnp.array([True])
out = pmap(lambda x: jax.lax.psum(x, 'i'), 'i')(x)
self.assertEqual(list(out), [1])
out = pmap(lambda x: jax.lax.pmean(x, 'i'), 'i')(x)
self.assertEqual(list(out), [1])
2019-01-28 11:13:34 -08:00
class PmapWithDevicesTest(jtu.JaxTestCase):
def testAllDevices(self):
f = pmap(lambda x: x - lax.psum(x, 'i'), axis_name='i',
devices=xla_bridge.devices())
shape = (xla_bridge.device_count(), 4)
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
expected = x - np.sum(x, 0)
ans = f(x)
self.assertAllClose(ans, expected, check_dtypes=True)
def testOneDevice(self):
if xla_bridge.device_count() == 1:
raise SkipTest("this test requires multiple devices")
d0 = xla_bridge.devices()[0]
d1 = xla_bridge.devices()[1]
f = lambda x: jnp.dot(x, x.T)
f0 = pmap(f, devices=[d0])
f1 = pmap(f, devices=[d1])
x = np.random.rand(1, 1000, 1000)
r0 = f0(x)
r1 = f1(x)
expected = np.expand_dims(np.dot(x.squeeze(), x.squeeze().T), 0)
self.assertAllClose(r0, expected, check_dtypes=True, atol=1e-6, rtol=1e-3)
self.assertAllClose(r1, expected, check_dtypes=True, atol=1e-6, rtol=1e-3)
def testNoDevicesError(self):
f = pmap(lambda x: x - lax.psum(x, 'i'), axis_name='i', devices=[])
shape = (xla_bridge.device_count(), 4)
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
with self.assertRaisesRegex(
ValueError, "'devices' argument to pmap must be non-empty, or None."):
f(x)
def testBadAxisSizeError(self):
if xla_bridge.device_count() == 1:
raise SkipTest("this test requires multiple devices")
f = pmap(lambda x: lax.psum(x, 'i'), axis_name='i',
devices=xla_bridge.devices())
with self.assertRaisesRegex(
2019-09-27 11:50:21 -07:00
ValueError, r"Leading axis size of input to pmapped function must "
r"equal the number of local devices passed to pmap. Got axis_size=1, "
r"num_local_devices=\d."):
f(jnp.ones(1))
with self.assertRaisesRegex(
2019-09-27 11:50:21 -07:00
ValueError, r"Leading axis size of input to pmapped function must "
r"equal the number of local devices passed to pmap. Got axis_size=\d, "
r"num_local_devices=\d."):
f(jnp.ones(xla_bridge.device_count() + 1))
def testNestedPmapsError(self):
# Devices specified in outer pmap
@partial(pmap, axis_name='i', devices=xla_bridge.devices())
def foo(x):
@partial(pmap, axis_name='j')
def bar(y):
return lax.psum(y, 'j')
return bar(x)
with self.assertRaisesRegex(
ValueError,
"Nested pmaps with explicit devices argument."):
foo(jnp.ones((xla_bridge.device_count(), 1)))
# Devices specified in inner pmap
@partial(pmap, axis_name='i')
def foo(x):
@partial(pmap, axis_name='j', devices=xla_bridge.devices())
def bar(y):
return lax.psum(y, 'j')
return bar(x)
with self.assertRaisesRegex(
ValueError,
"Nested pmaps with explicit devices argument."):
foo(jnp.ones((xla_bridge.device_count(), 1)))
def testJitInPmap(self):
@partial(pmap, axis_name='i', devices=xla_bridge.devices())
def foo(x):
@jit
def bar(y):
return y + 1
return lax.psum(bar(x), 'i')
ndevices = xla_bridge.device_count()
ans = foo(jnp.ones((ndevices, 1)))
expected = np.ones((ndevices, 1), dtype=jnp.float_) * ndevices * 2
self.assertAllClose(ans, expected, check_dtypes=True)
def testPmapInJit(self):
@jit
def foo(x):
@partial(pmap, axis_name='i', devices=xla_bridge.devices())
def bar(y):
return lax.psum(y, 'i')
return bar(x)
ndevices = xla_bridge.device_count()
ans = foo(jnp.ones((ndevices, 1)))
expected = np.ones((ndevices, 1), dtype=jnp.float_) * ndevices
self.assertAllClose(ans, expected, check_dtypes=True)
def testGradBasic(self):
@partial(pmap, axis_name='i', devices=xla_bridge.devices())
def f(x):
return jnp.sin(x)
shape = (xla_bridge.device_count(), 4)
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
ans = grad(lambda x: jnp.sum(jnp.sin(x)))(x)
expected = grad(lambda x: jnp.sum(f(x)))(x)
self.assertAllClose(ans, expected, check_dtypes=False)
def testPmapStaticArgnums(self):
@partial(pmap, axis_name='i', static_broadcasted_argnums=1)
def f(x, y):
return jnp.sin(x + y)
shape = (xla_bridge.device_count(), 4)
x = np.arange(prod(shape), dtype=np.float32).reshape(shape)
y = np.arange(4, dtype=np.float32)
ans = f(x, y)
expected = np.sin(x + y[None])
self.assertAllClose(ans, expected, check_dtypes=False)
class ShardedDeviceArrayTest(jtu.JaxTestCase):
def testThreadsafeIndexing(self):
# NOTE(skye): I picked these values to be big enough to cause interesting
# execution overlap, but small enough to not use too much memory. YMMV.
shape = (8, 8000, 1000)
if jax.device_count() < shape[0]:
raise SkipTest(f"requires {shape[0]} devices")
x = jnp.arange(jnp.prod(shape)).reshape(shape)
sharded_x = pmap(lambda x: x)(x)
num_threads = 10
futures = []
expected = []
with ThreadPoolExecutor(max_workers=num_threads) as executor:
for i in range(num_threads):
idx = i % shape[0]
# Mix together different kinds of indices
if i % 2 == 0:
idx = slice(idx, idx + 1)
# Use the "kwarg trick" to work around late-binding closures. See
# https://docs.python-guide.org/writing/gotchas/#late-binding-closures.
futures.append(executor.submit(
lambda idx=idx: [sharded_x[idx] for _ in range(10)][0]))
expected.append(x[idx])
actual = [f.result() for f in futures]
self.assertAllClose(actual, expected, check_dtypes=False)
Allow ShardedDeviceArrays to represent arbitrary data shardings. (#2142) This change introduces ShardingSpec, a struct describing how an array should be sharded. This is integrated into ShardedDeviceArray to allow more flexible sharding. It supports partitioning (both "pmap-style", where an entire axis is decomposed into separate shards and doesn't appear in the on-device shape at all, and "sharded_jit-style", where an axis is chunked into shards but remains in the on-device shape) and replication. This removes the need for ChunkedDeviceArray, since a ShardedDeviceArray can now represent chunks. Here are pmap_benchmark times showing that the overall effect of this change neutral to positive (integer indexing is much faster!). **pmap_shard_args** ``` ---------Benchmark summary for pmap_shard_args--------- nargs nshards mean %std relative mean/baseline ------- --------- --------- --------- ---------- --------------- 10 8 0.041855 4.15223 1 1.01466 100 8 0.129884 4.85321 3.1032 0.988543 101 8 0.136347 6.20233 3.2576 0.967138 500 8 0.533207 3.6815 12.7394 1.0294 1000 8 1.10338 0.525193 26.362 0.960435 5000 8 5.33911 0 127.562 0.963319 100 2 0.0638619 10.7069 1.52579 1.0362 100 4 0.0868253 6.76701 2.07443 0.967323 100 8 0.128151 6.46004 3.06177 0.979742 100 100 1.22631 1.94885 29.299 1.00371 100 500 6.60746 0 157.865 0.956657 ``` **pmap_shard_outputs** ``` nouts nshards mean %std relative mean/baseline ------- --------- ---------- --------- ---------- --------------- 10 8 0.0664526 9.49251 1 0.938466 100 8 0.195711 2.19429 2.94512 1.04239 500 8 0.82577 0.330864 12.4265 0.994669 1000 8 1.68323 1.0516 25.3298 0.966915 5000 8 8.89032 0 133.784 0.998038 100 2 0.074806 10.1734 1.12571 0.980254 100 4 0.121334 5.76774 1.82588 1.02033 100 8 0.185253 5.45068 2.78775 1.01666 100 100 2.37076 0 35.6759 1.08629 100 500 17.0832 0 257.074 0.976879 ``` **ShardedDeviceArray_indexing** ``` indices_fn mean %std relative mean/baseline ------------------ ---------- ------- ---------- --------------- integer_indices 0.0603473 8.29159 1 0.359496 integer_2D_indices 18.0241 0 298.672 1.00583 ``` This is how I ran the benchmark: ``` TARGET_TOTAL_SECS=2 CUDA_VISIBLE_DEVICES= XLA_FLAGS=--xla_force_host_platform_device_count=500 python3 benchmarks/pmap_benchmark.py --baseline_dir=<results as of a3cc9a7> ```
2020-04-15 12:43:55 -07:00
class SpecToIndicesTest(jtu.JaxTestCase):
def testShardsPerAxis(self):
shape = (4, 8)
spec = pxla.ShardingSpec(shards_per_axis=(2, 2),
is_axis_materialized=(True, True),
replication_factor=1)
self.assertEqual(pxla.spec_to_indices(shape, spec),
((slice(0,2), slice(0,4)),
(slice(0,2), slice(4,8)),
(slice(2,4), slice(0,4)),
(slice(2,4), slice(4,8))))
def testUnshardedAxis(self):
shape = (4, 8)
spec = pxla.ShardingSpec(shards_per_axis=(2, 1),
is_axis_materialized=(True, True),
replication_factor=1)
self.assertEqual(pxla.spec_to_indices(shape, spec),
(slice(0,2), (slice(2,4))))
def testNoSharding(self):
shape = (4, 8)
Allow ShardedDeviceArrays to represent arbitrary data shardings. (#2142) This change introduces ShardingSpec, a struct describing how an array should be sharded. This is integrated into ShardedDeviceArray to allow more flexible sharding. It supports partitioning (both "pmap-style", where an entire axis is decomposed into separate shards and doesn't appear in the on-device shape at all, and "sharded_jit-style", where an axis is chunked into shards but remains in the on-device shape) and replication. This removes the need for ChunkedDeviceArray, since a ShardedDeviceArray can now represent chunks. Here are pmap_benchmark times showing that the overall effect of this change neutral to positive (integer indexing is much faster!). **pmap_shard_args** ``` ---------Benchmark summary for pmap_shard_args--------- nargs nshards mean %std relative mean/baseline ------- --------- --------- --------- ---------- --------------- 10 8 0.041855 4.15223 1 1.01466 100 8 0.129884 4.85321 3.1032 0.988543 101 8 0.136347 6.20233 3.2576 0.967138 500 8 0.533207 3.6815 12.7394 1.0294 1000 8 1.10338 0.525193 26.362 0.960435 5000 8 5.33911 0 127.562 0.963319 100 2 0.0638619 10.7069 1.52579 1.0362 100 4 0.0868253 6.76701 2.07443 0.967323 100 8 0.128151 6.46004 3.06177 0.979742 100 100 1.22631 1.94885 29.299 1.00371 100 500 6.60746 0 157.865 0.956657 ``` **pmap_shard_outputs** ``` nouts nshards mean %std relative mean/baseline ------- --------- ---------- --------- ---------- --------------- 10 8 0.0664526 9.49251 1 0.938466 100 8 0.195711 2.19429 2.94512 1.04239 500 8 0.82577 0.330864 12.4265 0.994669 1000 8 1.68323 1.0516 25.3298 0.966915 5000 8 8.89032 0 133.784 0.998038 100 2 0.074806 10.1734 1.12571 0.980254 100 4 0.121334 5.76774 1.82588 1.02033 100 8 0.185253 5.45068 2.78775 1.01666 100 100 2.37076 0 35.6759 1.08629 100 500 17.0832 0 257.074 0.976879 ``` **ShardedDeviceArray_indexing** ``` indices_fn mean %std relative mean/baseline ------------------ ---------- ------- ---------- --------------- integer_indices 0.0603473 8.29159 1 0.359496 integer_2D_indices 18.0241 0 298.672 1.00583 ``` This is how I ran the benchmark: ``` TARGET_TOTAL_SECS=2 CUDA_VISIBLE_DEVICES= XLA_FLAGS=--xla_force_host_platform_device_count=500 python3 benchmarks/pmap_benchmark.py --baseline_dir=<results as of a3cc9a7> ```
2020-04-15 12:43:55 -07:00
spec = pxla.ShardingSpec(shards_per_axis=(1, 1),
is_axis_materialized=(True, True),
replication_factor=1)
self.assertEqual(pxla.spec_to_indices(shape, spec),
(slice(None),))
def testUnmaterializedAxis(self):
shape = (4, 8)
spec = pxla.ShardingSpec(shards_per_axis=(4, 1),
is_axis_materialized=(False, True),
replication_factor=1)
self.assertEqual(pxla.spec_to_indices(shape, spec),
(0, 1, 2, 3))
shape = (2, 2)
spec = pxla.ShardingSpec(shards_per_axis=(1, 2),
is_axis_materialized=(True, False),
replication_factor=1)
self.assertEqual(pxla.spec_to_indices(shape, spec),
((slice(None), 0),
(slice(None), 1)))
def testReplication(self):
shape = (2, 8)
spec = pxla.ShardingSpec(shards_per_axis=(2, 1),
is_axis_materialized=(False, True),
replication_factor=3)
self.assertEqual(pxla.spec_to_indices(shape, spec),
(0, 0, 0, 1, 1, 1))
def _spec_str(spec):
return (f"({spec.shards_per_axis},"
f"{spec.is_axis_materialized},"
f"{spec.replication_factor})")
class ShardArgsTest(jtu.JaxTestCase):
def numpy_array(x):
return x
def device_array(x):
return jax.device_put(x)
# TODO(skye): add coverage for ShardedDeviceArrays
@parameterized.named_parameters(
{"testcase_name":
f"_shape={shape}_spec={_spec_str(spec)}_arg={make_arg.__name__}"
.replace(" ", ""),
"shape": shape, "spec": spec, "make_arg": make_arg}
for make_arg in [numpy_array, device_array]
for shape, spec in [
# pmap(in_axes=0)
[(4, 8), pxla.ShardingSpec(shards_per_axis=(4, 1),
is_axis_materialized=(False, True),
replication_factor=1)],
# pmap(in_axes=1)
[(2, 2), pxla.ShardingSpec(shards_per_axis=(1, 2),
is_axis_materialized=(True, False),
replication_factor=1)],
# unsharded
[(4, 8), pxla.ShardingSpec(shards_per_axis=(1, 1),
is_axis_materialized=(True, True),
replication_factor=1)],
# partitioned, 1 axis
[(4, 8), pxla.ShardingSpec(shards_per_axis=(2, 1),
is_axis_materialized=(True, True),
replication_factor=1)],
# partitioned, 2 axes
[(4, 8), pxla.ShardingSpec(shards_per_axis=(2, 2),
is_axis_materialized=(True, True),
replication_factor=1)],
# replication + sharding
[(2, 8), pxla.ShardingSpec(shards_per_axis=(2, 1),
is_axis_materialized=(False, True),
replication_factor=3)],
# replication, no sharding
[(2, 8), pxla.ShardingSpec(shards_per_axis=(1, 1),
is_axis_materialized=(True, True),
replication_factor=3)],
])
def testShardArgs(self, shape, spec, make_arg):
indices = pxla.spec_to_indices(shape, spec)
nshards = len(indices)
if jax.device_count() < nshards:
raise SkipTest
x = np.arange(np.prod(shape)).reshape(shape)
arg = make_arg(x)
bufs = pxla.shard_args(jax.devices()[:nshards],
[indices], [arg])
self.assertEqual(len(bufs), nshards)
for buf, idx in zip(bufs, indices):
self.assertEqual(len(buf), 1)
self.assertAllClose(buf[0].to_py(), x[idx], check_dtypes=False)
2019-01-28 11:13:34 -08:00
if __name__ == '__main__':
absltest.main()