2018-11-17 18:03:33 -08:00
|
|
|
# Copyright 2018 Google LLC
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# https://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
|
2019-12-19 11:19:58 -08:00
|
|
|
from contextlib import contextmanager
|
2018-11-17 18:03:33 -08:00
|
|
|
import functools
|
2018-11-21 13:20:44 -08:00
|
|
|
import re
|
2018-12-06 17:31:52 -05:00
|
|
|
import itertools as it
|
2018-12-13 08:56:40 -08:00
|
|
|
import os
|
2019-05-10 12:27:15 -07:00
|
|
|
from unittest import SkipTest
|
2018-11-17 18:03:33 -08:00
|
|
|
|
|
|
|
from absl.testing import absltest
|
|
|
|
from absl.testing import parameterized
|
|
|
|
|
|
|
|
import numpy as onp
|
|
|
|
import numpy.random as npr
|
|
|
|
|
|
|
|
from . import api
|
2019-11-15 10:02:51 -05:00
|
|
|
from . import dtypes
|
2019-12-10 00:38:18 -08:00
|
|
|
from . import lax
|
2018-11-29 12:30:34 -08:00
|
|
|
from .config import flags
|
2018-11-17 18:03:33 -08:00
|
|
|
from .util import partial
|
|
|
|
from .tree_util import tree_multimap, tree_all, tree_map, tree_reduce
|
2019-05-10 12:27:15 -07:00
|
|
|
from .lib import xla_bridge
|
2019-09-25 15:59:52 +02:00
|
|
|
from .interpreters import xla
|
2018-11-17 18:03:33 -08:00
|
|
|
|
2018-12-28 13:51:32 -08:00
|
|
|
|
2018-11-17 18:03:33 -08:00
|
|
|
FLAGS = flags.FLAGS
|
|
|
|
flags.DEFINE_enum(
|
2019-05-10 12:27:15 -07:00
|
|
|
'jax_test_dut', '',
|
|
|
|
enum_values=['', 'cpu', 'gpu', 'tpu'],
|
2018-11-17 18:03:33 -08:00
|
|
|
help=
|
|
|
|
'Describes the device under test in case special consideration is required.'
|
|
|
|
)
|
|
|
|
|
2018-12-06 17:31:52 -05:00
|
|
|
flags.DEFINE_integer(
|
|
|
|
'num_generated_cases',
|
2019-04-12 09:29:46 -04:00
|
|
|
int(os.getenv('JAX_NUM_GENERATED_CASES', 10)),
|
2018-12-06 17:31:52 -05:00
|
|
|
help='Number of generated cases to test')
|
2018-11-17 18:03:33 -08:00
|
|
|
|
|
|
|
EPS = 1e-4
|
|
|
|
|
Change scalar promotion rules to prefer array types over scalar types. (#1709)
* Change scalar promotion rules to prefer array types over scalar types.
Currently JAX does not treat Python scalars specially during type promotion. This means that, for example:
`1. + np.array([...], np.float32)`
ends up as an array of type np.float64. The `1.` is promoted to a default type (here np.float64), and the type promotion of a np.float64 and an np.float32 is an np.float64. This is unlike classic NumPy, which treats scalars specially during type promotion, in particular, preferring the type of an array over the type of a scalar.
This change adds a notion of weak_type to JAX avals. During type promotion, we prefer non-weak types, i.e., the type of the array in the example above, ignoring the type of the scalar.
In contexts where a Python scalar is to be promoted to a NumPy value, a default type is used (e.g., `np.float_`). This change also makes it possible to use 32-bit default types that differ from NumPy's default types. The JAX test suite passes with 32-bit default types. However, we do not yet enable this change or expose it in the API.
2019-11-18 14:51:10 -05:00
|
|
|
def _dtype(x):
|
|
|
|
return (getattr(x, 'dtype', None) or
|
|
|
|
onp.dtype(dtypes.python_scalar_dtypes.get(type(x), None)) or
|
|
|
|
onp.asarray(x).dtype)
|
2018-11-17 18:03:33 -08:00
|
|
|
|
2019-04-24 21:31:15 -07:00
|
|
|
def is_sequence(x):
|
|
|
|
try:
|
|
|
|
iter(x)
|
|
|
|
except TypeError:
|
|
|
|
return False
|
|
|
|
else:
|
|
|
|
return True
|
|
|
|
|
2019-11-20 22:43:46 -05:00
|
|
|
_default_tolerance = {
|
2019-11-16 13:51:42 -05:00
|
|
|
onp.dtype(onp.bool_): 0,
|
|
|
|
onp.dtype(onp.int8): 0,
|
|
|
|
onp.dtype(onp.int16): 0,
|
|
|
|
onp.dtype(onp.int32): 0,
|
|
|
|
onp.dtype(onp.int64): 0,
|
|
|
|
onp.dtype(onp.uint8): 0,
|
|
|
|
onp.dtype(onp.uint16): 0,
|
|
|
|
onp.dtype(onp.uint32): 0,
|
|
|
|
onp.dtype(onp.uint64): 0,
|
2019-11-20 22:43:46 -05:00
|
|
|
onp.dtype(dtypes.bfloat16): 1e-2,
|
2019-11-16 13:51:42 -05:00
|
|
|
onp.dtype(onp.float16): 1e-3,
|
|
|
|
onp.dtype(onp.float32): 1e-6,
|
|
|
|
onp.dtype(onp.float64): 1e-15,
|
|
|
|
onp.dtype(onp.complex64): 1e-6,
|
|
|
|
onp.dtype(onp.complex128): 1e-15,
|
|
|
|
}
|
|
|
|
|
2019-11-20 22:43:46 -05:00
|
|
|
def default_tolerance():
|
|
|
|
if device_under_test() != "tpu":
|
|
|
|
return _default_tolerance
|
|
|
|
tol = _default_tolerance.copy()
|
|
|
|
tol[onp.dtype(onp.float32)] = 1e-3
|
|
|
|
tol[onp.dtype(onp.complex64)] = 1e-3
|
|
|
|
return tol
|
2019-11-16 13:51:42 -05:00
|
|
|
|
|
|
|
default_gradient_tolerance = {
|
2019-11-20 22:43:46 -05:00
|
|
|
onp.dtype(dtypes.bfloat16): 1e-1,
|
2019-11-16 13:51:42 -05:00
|
|
|
onp.dtype(onp.float16): 1e-2,
|
|
|
|
onp.dtype(onp.float32): 2e-3,
|
Change scalar promotion rules to prefer array types over scalar types. (#1709)
* Change scalar promotion rules to prefer array types over scalar types.
Currently JAX does not treat Python scalars specially during type promotion. This means that, for example:
`1. + np.array([...], np.float32)`
ends up as an array of type np.float64. The `1.` is promoted to a default type (here np.float64), and the type promotion of a np.float64 and an np.float32 is an np.float64. This is unlike classic NumPy, which treats scalars specially during type promotion, in particular, preferring the type of an array over the type of a scalar.
This change adds a notion of weak_type to JAX avals. During type promotion, we prefer non-weak types, i.e., the type of the array in the example above, ignoring the type of the scalar.
In contexts where a Python scalar is to be promoted to a NumPy value, a default type is used (e.g., `np.float_`). This change also makes it possible to use 32-bit default types that differ from NumPy's default types. The JAX test suite passes with 32-bit default types. However, we do not yet enable this change or expose it in the API.
2019-11-18 14:51:10 -05:00
|
|
|
onp.dtype(onp.float64): 1e-5,
|
2019-11-16 13:51:42 -05:00
|
|
|
onp.dtype(onp.complex64): 1e-3,
|
Change scalar promotion rules to prefer array types over scalar types. (#1709)
* Change scalar promotion rules to prefer array types over scalar types.
Currently JAX does not treat Python scalars specially during type promotion. This means that, for example:
`1. + np.array([...], np.float32)`
ends up as an array of type np.float64. The `1.` is promoted to a default type (here np.float64), and the type promotion of a np.float64 and an np.float32 is an np.float64. This is unlike classic NumPy, which treats scalars specially during type promotion, in particular, preferring the type of an array over the type of a scalar.
This change adds a notion of weak_type to JAX avals. During type promotion, we prefer non-weak types, i.e., the type of the array in the example above, ignoring the type of the scalar.
In contexts where a Python scalar is to be promoted to a NumPy value, a default type is used (e.g., `np.float_`). This change also makes it possible to use 32-bit default types that differ from NumPy's default types. The JAX test suite passes with 32-bit default types. However, we do not yet enable this change or expose it in the API.
2019-11-18 14:51:10 -05:00
|
|
|
onp.dtype(onp.complex128): 1e-5,
|
2019-11-16 13:51:42 -05:00
|
|
|
}
|
|
|
|
|
2019-11-20 22:43:46 -05:00
|
|
|
def _assert_numpy_allclose(a, b, atol=None, rtol=None):
|
|
|
|
a = a.astype(onp.float32) if a.dtype == dtypes.bfloat16 else a
|
|
|
|
b = b.astype(onp.float32) if b.dtype == dtypes.bfloat16 else b
|
|
|
|
kw = {}
|
|
|
|
if atol: kw["atol"] = atol
|
|
|
|
if rtol: kw["rtol"] = rtol
|
|
|
|
onp.testing.assert_allclose(a, b, **kw)
|
2019-11-16 13:51:42 -05:00
|
|
|
|
|
|
|
def tolerance(dtype, tol=None):
|
|
|
|
tol = tol or {}
|
|
|
|
if not isinstance(tol, dict):
|
|
|
|
return tol
|
|
|
|
tol = {onp.dtype(key): value for key, value in tol.items()}
|
|
|
|
dtype = dtypes.canonicalize_dtype(onp.dtype(dtype))
|
2019-11-20 22:43:46 -05:00
|
|
|
return tol.get(dtype, default_tolerance()[dtype])
|
|
|
|
|
|
|
|
def _normalize_tolerance(tol):
|
|
|
|
tol = tol or 0
|
|
|
|
if isinstance(tol, dict):
|
|
|
|
return {onp.dtype(k): v for k, v in tol.items()}
|
|
|
|
else:
|
|
|
|
return {k: tol for k in _default_tolerance.keys()}
|
|
|
|
|
|
|
|
def join_tolerance(tol1, tol2):
|
|
|
|
tol1 = _normalize_tolerance(tol1)
|
|
|
|
tol2 = _normalize_tolerance(tol2)
|
|
|
|
out = tol1
|
|
|
|
for k, v in tol2.items():
|
|
|
|
out[k] = max(v, tol1.get(k, 0))
|
|
|
|
return out
|
2019-11-16 13:51:42 -05:00
|
|
|
|
|
|
|
def _assert_numpy_close(a, b, atol=None, rtol=None):
|
2018-12-14 18:40:50 -08:00
|
|
|
assert a.shape == b.shape
|
2019-11-16 13:51:42 -05:00
|
|
|
atol = max(tolerance(a.dtype, atol), tolerance(b.dtype, atol))
|
|
|
|
rtol = max(tolerance(a.dtype, rtol), tolerance(b.dtype, rtol))
|
2019-11-20 22:43:46 -05:00
|
|
|
_assert_numpy_allclose(a, b, atol=atol * a.size, rtol=rtol * b.size)
|
2018-11-17 18:03:33 -08:00
|
|
|
|
|
|
|
|
|
|
|
def check_eq(xs, ys):
|
2019-11-20 22:43:46 -05:00
|
|
|
tree_all(tree_multimap(_assert_numpy_allclose, xs, ys))
|
2018-11-17 18:03:33 -08:00
|
|
|
|
|
|
|
|
2019-11-16 13:51:42 -05:00
|
|
|
def check_close(xs, ys, atol=None, rtol=None):
|
|
|
|
assert_close = partial(_assert_numpy_close, atol=atol, rtol=rtol)
|
2019-11-11 12:51:15 -08:00
|
|
|
tree_all(tree_multimap(assert_close, xs, ys))
|
2018-11-17 18:03:33 -08:00
|
|
|
|
|
|
|
|
|
|
|
def inner_prod(xs, ys):
|
2019-11-20 22:43:46 -05:00
|
|
|
def contract(x, y):
|
|
|
|
return onp.real(onp.dot(onp.conj(x).reshape(-1), y.reshape(-1)))
|
2018-11-17 18:03:33 -08:00
|
|
|
return tree_reduce(onp.add, tree_multimap(contract, xs, ys))
|
|
|
|
|
|
|
|
|
Change scalar promotion rules to prefer array types over scalar types. (#1709)
* Change scalar promotion rules to prefer array types over scalar types.
Currently JAX does not treat Python scalars specially during type promotion. This means that, for example:
`1. + np.array([...], np.float32)`
ends up as an array of type np.float64. The `1.` is promoted to a default type (here np.float64), and the type promotion of a np.float64 and an np.float32 is an np.float64. This is unlike classic NumPy, which treats scalars specially during type promotion, in particular, preferring the type of an array over the type of a scalar.
This change adds a notion of weak_type to JAX avals. During type promotion, we prefer non-weak types, i.e., the type of the array in the example above, ignoring the type of the scalar.
In contexts where a Python scalar is to be promoted to a NumPy value, a default type is used (e.g., `np.float_`). This change also makes it possible to use 32-bit default types that differ from NumPy's default types. The JAX test suite passes with 32-bit default types. However, we do not yet enable this change or expose it in the API.
2019-11-18 14:51:10 -05:00
|
|
|
add = partial(tree_multimap, lambda x, y: onp.add(x, y, dtype=_dtype(x)))
|
|
|
|
sub = partial(tree_multimap, lambda x, y: onp.subtract(x, y, dtype=_dtype(x)))
|
|
|
|
conj = partial(tree_map, lambda x: onp.conj(x, dtype=_dtype(x)))
|
2018-11-17 18:03:33 -08:00
|
|
|
|
|
|
|
def scalar_mul(xs, a):
|
|
|
|
return tree_map(lambda x: onp.multiply(x, a, dtype=_dtype(x)), xs)
|
|
|
|
|
|
|
|
|
|
|
|
def rand_like(rng, x):
|
|
|
|
shape = onp.shape(x)
|
|
|
|
dtype = _dtype(x)
|
|
|
|
randn = lambda: onp.asarray(rng.randn(*shape), dtype=dtype)
|
2019-11-15 10:02:51 -05:00
|
|
|
if dtypes.issubdtype(dtype, onp.complexfloating):
|
2019-02-01 14:01:06 -05:00
|
|
|
return randn() + dtype.type(1.0j) * randn()
|
2018-11-17 18:03:33 -08:00
|
|
|
else:
|
|
|
|
return randn()
|
|
|
|
|
|
|
|
|
|
|
|
def numerical_jvp(f, primals, tangents, eps=EPS):
|
2019-02-15 14:01:59 -05:00
|
|
|
delta = scalar_mul(tangents, eps)
|
2018-11-17 18:03:33 -08:00
|
|
|
f_pos = f(*add(primals, delta))
|
|
|
|
f_neg = f(*sub(primals, delta))
|
2019-02-15 14:01:59 -05:00
|
|
|
return scalar_mul(sub(f_pos, f_neg), 0.5 / eps)
|
2018-11-17 18:03:33 -08:00
|
|
|
|
|
|
|
|
Change scalar promotion rules to prefer array types over scalar types. (#1709)
* Change scalar promotion rules to prefer array types over scalar types.
Currently JAX does not treat Python scalars specially during type promotion. This means that, for example:
`1. + np.array([...], np.float32)`
ends up as an array of type np.float64. The `1.` is promoted to a default type (here np.float64), and the type promotion of a np.float64 and an np.float32 is an np.float64. This is unlike classic NumPy, which treats scalars specially during type promotion, in particular, preferring the type of an array over the type of a scalar.
This change adds a notion of weak_type to JAX avals. During type promotion, we prefer non-weak types, i.e., the type of the array in the example above, ignoring the type of the scalar.
In contexts where a Python scalar is to be promoted to a NumPy value, a default type is used (e.g., `np.float_`). This change also makes it possible to use 32-bit default types that differ from NumPy's default types. The JAX test suite passes with 32-bit default types. However, we do not yet enable this change or expose it in the API.
2019-11-18 14:51:10 -05:00
|
|
|
def _merge_tolerance(tol, default):
|
|
|
|
if tol is None:
|
|
|
|
return default
|
|
|
|
if not isinstance(tol, dict):
|
|
|
|
return tol
|
|
|
|
out = default.copy()
|
|
|
|
for k, v in tol.items():
|
|
|
|
out[onp.dtype(k)] = v
|
|
|
|
return out
|
|
|
|
|
2019-11-16 13:51:42 -05:00
|
|
|
def check_jvp(f, f_jvp, args, atol=None, rtol=None, eps=EPS):
|
Change scalar promotion rules to prefer array types over scalar types. (#1709)
* Change scalar promotion rules to prefer array types over scalar types.
Currently JAX does not treat Python scalars specially during type promotion. This means that, for example:
`1. + np.array([...], np.float32)`
ends up as an array of type np.float64. The `1.` is promoted to a default type (here np.float64), and the type promotion of a np.float64 and an np.float32 is an np.float64. This is unlike classic NumPy, which treats scalars specially during type promotion, in particular, preferring the type of an array over the type of a scalar.
This change adds a notion of weak_type to JAX avals. During type promotion, we prefer non-weak types, i.e., the type of the array in the example above, ignoring the type of the scalar.
In contexts where a Python scalar is to be promoted to a NumPy value, a default type is used (e.g., `np.float_`). This change also makes it possible to use 32-bit default types that differ from NumPy's default types. The JAX test suite passes with 32-bit default types. However, we do not yet enable this change or expose it in the API.
2019-11-18 14:51:10 -05:00
|
|
|
atol = _merge_tolerance(atol, default_gradient_tolerance)
|
|
|
|
rtol = _merge_tolerance(rtol, default_gradient_tolerance)
|
2018-11-17 18:03:33 -08:00
|
|
|
rng = onp.random.RandomState(0)
|
|
|
|
tangent = tree_map(partial(rand_like, rng), args)
|
|
|
|
v_out, t_out = f_jvp(args, tangent)
|
|
|
|
v_out_expected = f(*args)
|
|
|
|
t_out_expected = numerical_jvp(f, args, tangent, eps=eps)
|
2019-10-22 19:53:59 -04:00
|
|
|
# In principle we should expect exact equality of v_out and v_out_expected,
|
|
|
|
# but due to nondeterminism especially on GPU (e.g., due to convolution
|
|
|
|
# autotuning) we only require "close".
|
|
|
|
check_close(v_out, v_out_expected, atol=atol, rtol=rtol)
|
2018-11-17 18:03:33 -08:00
|
|
|
check_close(t_out, t_out_expected, atol=atol, rtol=rtol)
|
|
|
|
|
|
|
|
|
2019-11-16 13:51:42 -05:00
|
|
|
def check_vjp(f, f_vjp, args, atol=None, rtol=None, eps=EPS):
|
Change scalar promotion rules to prefer array types over scalar types. (#1709)
* Change scalar promotion rules to prefer array types over scalar types.
Currently JAX does not treat Python scalars specially during type promotion. This means that, for example:
`1. + np.array([...], np.float32)`
ends up as an array of type np.float64. The `1.` is promoted to a default type (here np.float64), and the type promotion of a np.float64 and an np.float32 is an np.float64. This is unlike classic NumPy, which treats scalars specially during type promotion, in particular, preferring the type of an array over the type of a scalar.
This change adds a notion of weak_type to JAX avals. During type promotion, we prefer non-weak types, i.e., the type of the array in the example above, ignoring the type of the scalar.
In contexts where a Python scalar is to be promoted to a NumPy value, a default type is used (e.g., `np.float_`). This change also makes it possible to use 32-bit default types that differ from NumPy's default types. The JAX test suite passes with 32-bit default types. However, we do not yet enable this change or expose it in the API.
2019-11-18 14:51:10 -05:00
|
|
|
atol = _merge_tolerance(atol, default_gradient_tolerance)
|
|
|
|
rtol = _merge_tolerance(rtol, default_gradient_tolerance)
|
2018-11-17 18:03:33 -08:00
|
|
|
_rand_like = partial(rand_like, onp.random.RandomState(0))
|
|
|
|
v_out, vjpfun = f_vjp(*args)
|
|
|
|
v_out_expected = f(*args)
|
2019-10-22 19:53:59 -04:00
|
|
|
check_close(v_out, v_out_expected, atol=atol, rtol=rtol)
|
2018-11-17 18:03:33 -08:00
|
|
|
tangent = tree_map(_rand_like, args)
|
2019-02-15 14:01:59 -05:00
|
|
|
tangent_out = numerical_jvp(f, args, tangent, eps=eps)
|
2018-11-17 18:03:33 -08:00
|
|
|
cotangent = tree_map(_rand_like, v_out)
|
|
|
|
cotangent_out = conj(vjpfun(conj(cotangent)))
|
|
|
|
ip = inner_prod(tangent, cotangent_out)
|
|
|
|
ip_expected = inner_prod(tangent_out, cotangent)
|
|
|
|
check_close(ip, ip_expected, atol=atol, rtol=rtol)
|
|
|
|
|
|
|
|
|
2019-05-21 17:22:33 -07:00
|
|
|
def check_grads(f, args, order,
|
|
|
|
modes=["fwd", "rev"], atol=None, rtol=None, eps=None):
|
2019-05-03 12:37:14 -07:00
|
|
|
args = tuple(args)
|
2019-05-21 17:22:33 -07:00
|
|
|
eps = eps or EPS
|
2019-05-21 15:14:28 -07:00
|
|
|
|
2019-05-21 17:22:33 -07:00
|
|
|
_check_jvp = partial(check_jvp, atol=atol, rtol=rtol, eps=eps)
|
|
|
|
_check_vjp = partial(check_vjp, atol=atol, rtol=rtol, eps=eps)
|
2019-05-21 15:14:28 -07:00
|
|
|
|
2019-05-21 17:22:33 -07:00
|
|
|
def _check_grads(f, args, order):
|
2019-05-21 15:14:28 -07:00
|
|
|
if "fwd" in modes:
|
2019-05-21 17:22:33 -07:00
|
|
|
_check_jvp(f, partial(api.jvp, f), args)
|
|
|
|
if order > 1:
|
|
|
|
_check_grads(partial(api.jvp, f), (args, args), order - 1)
|
|
|
|
|
2019-05-21 15:14:28 -07:00
|
|
|
if "rev" in modes:
|
2019-05-21 17:22:33 -07:00
|
|
|
_check_vjp(f, partial(api.vjp, f), args)
|
|
|
|
if order > 1:
|
|
|
|
def f_vjp(*args):
|
|
|
|
out_primal_py, vjp_py = api.vjp(f, *args)
|
|
|
|
return vjp_py(out_primal_py)
|
|
|
|
_check_grads(f_vjp, args, order - 1)
|
|
|
|
|
|
|
|
_check_grads(f, args, order)
|
2018-12-17 17:20:52 -08:00
|
|
|
|
2019-12-19 11:19:58 -08:00
|
|
|
|
|
|
|
@contextmanager
|
|
|
|
def count_primitive_compiles():
|
|
|
|
xla.xla_primitive_callable.cache_clear()
|
|
|
|
|
|
|
|
# We count how many times we call primitive_computation (which is called
|
|
|
|
# inside xla_primitive_callable) instead of xla_primitive_callable so we don't
|
|
|
|
# count cache hits.
|
|
|
|
primitive_computation = xla.primitive_computation
|
|
|
|
count = [0]
|
|
|
|
|
|
|
|
def primitive_computation_and_count(*args, **kwargs):
|
|
|
|
count[0] += 1
|
|
|
|
return primitive_computation(*args, **kwargs)
|
|
|
|
|
|
|
|
xla.primitive_computation = primitive_computation_and_count
|
|
|
|
try:
|
|
|
|
yield count
|
|
|
|
finally:
|
|
|
|
xla.primitive_computation = primitive_computation
|
|
|
|
|
|
|
|
|
|
|
|
@contextmanager
|
|
|
|
def count_jit_and_pmap_compiles():
|
|
|
|
# No need to clear any caches since we generally jit and pmap fresh callables
|
|
|
|
# in tests.
|
|
|
|
|
|
|
|
jaxpr_subcomp = xla.jaxpr_subcomp
|
|
|
|
count = [0]
|
|
|
|
|
|
|
|
def jaxpr_subcomp_and_count(*args, **kwargs):
|
|
|
|
count[0] += 1
|
|
|
|
return jaxpr_subcomp(*args, **kwargs)
|
|
|
|
|
|
|
|
xla.jaxpr_subcomp = jaxpr_subcomp_and_count
|
|
|
|
try:
|
|
|
|
yield count
|
|
|
|
finally:
|
|
|
|
xla.jaxpr_subcomp = jaxpr_subcomp
|
|
|
|
|
|
|
|
|
2019-08-04 17:17:49 -04:00
|
|
|
def device_under_test():
|
|
|
|
return FLAGS.jax_test_dut or xla_bridge.get_backend().platform
|
2018-12-17 17:20:52 -08:00
|
|
|
|
2019-10-22 19:53:59 -04:00
|
|
|
def supported_dtypes():
|
|
|
|
if device_under_test() == "tpu":
|
2019-12-06 14:49:27 -05:00
|
|
|
return {onp.bool_, onp.int32, onp.uint32, dtypes.bfloat16, onp.float32,
|
|
|
|
onp.complex64}
|
2019-10-22 19:53:59 -04:00
|
|
|
else:
|
|
|
|
return {onp.bool_, onp.int8, onp.int16, onp.int32, onp.int64,
|
|
|
|
onp.uint8, onp.uint16, onp.uint32, onp.uint64,
|
2019-11-20 22:43:46 -05:00
|
|
|
dtypes.bfloat16, onp.float16, onp.float32, onp.float64,
|
|
|
|
onp.complex64, onp.complex128}
|
2019-10-22 19:53:59 -04:00
|
|
|
|
2018-11-17 18:03:33 -08:00
|
|
|
def skip_on_devices(*disabled_devices):
|
|
|
|
"""A decorator for test methods to skip the test on certain devices."""
|
|
|
|
def skip(test_method):
|
|
|
|
@functools.wraps(test_method)
|
|
|
|
def test_method_wrapper(self, *args, **kwargs):
|
2019-08-04 17:17:49 -04:00
|
|
|
device = device_under_test()
|
2018-11-17 18:03:33 -08:00
|
|
|
if device in disabled_devices:
|
|
|
|
test_name = getattr(test_method, '__name__', '[unknown test]')
|
2019-05-10 12:27:15 -07:00
|
|
|
raise SkipTest('{} not supported on {}.'
|
|
|
|
.format(test_name, device.upper()))
|
2018-11-17 18:03:33 -08:00
|
|
|
return test_method(self, *args, **kwargs)
|
|
|
|
return test_method_wrapper
|
|
|
|
return skip
|
|
|
|
|
|
|
|
|
2018-11-25 18:53:48 -08:00
|
|
|
def skip_on_flag(flag_name, skip_value):
|
|
|
|
"""A decorator for test methods to skip the test when flags are set."""
|
|
|
|
def skip(test_method): # pylint: disable=missing-docstring
|
|
|
|
@functools.wraps(test_method)
|
|
|
|
def test_method_wrapper(self, *args, **kwargs):
|
|
|
|
flag_value = getattr(FLAGS, flag_name)
|
|
|
|
if flag_value == skip_value:
|
|
|
|
test_name = getattr(test_method, '__name__', '[unknown test]')
|
2019-05-10 12:27:15 -07:00
|
|
|
raise SkipTest('{} not supported when FLAGS.{} is {}'
|
|
|
|
.format(test_name, flag_name, flag_value))
|
2018-11-25 18:53:48 -08:00
|
|
|
return test_method(self, *args, **kwargs)
|
|
|
|
return test_method_wrapper
|
|
|
|
return skip
|
|
|
|
|
|
|
|
|
2018-11-17 18:03:33 -08:00
|
|
|
def format_test_name_suffix(opname, shapes, dtypes):
|
|
|
|
arg_descriptions = (format_shape_dtype_string(shape, dtype)
|
|
|
|
for shape, dtype in zip(shapes, dtypes))
|
|
|
|
return '{}_{}'.format(opname.capitalize(), '_'.join(arg_descriptions))
|
|
|
|
|
|
|
|
|
2019-05-19 12:44:51 -07:00
|
|
|
# We use special symbols, represented as singleton objects, to distinguish
|
|
|
|
# between NumPy scalars, Python scalars, and 0-D arrays.
|
|
|
|
class ScalarShape(object):
|
|
|
|
def __len__(self): return 0
|
|
|
|
class _NumpyScalar(ScalarShape): pass
|
|
|
|
class _PythonScalar(ScalarShape): pass
|
2018-12-06 06:21:38 -08:00
|
|
|
NUMPY_SCALAR_SHAPE = _NumpyScalar()
|
2019-05-19 12:44:51 -07:00
|
|
|
PYTHON_SCALAR_SHAPE = _PythonScalar()
|
2018-12-06 06:21:38 -08:00
|
|
|
|
|
|
|
|
|
|
|
def _dims_of_shape(shape):
|
|
|
|
"""Converts `shape` to a tuple of dimensions."""
|
2019-05-19 12:44:51 -07:00
|
|
|
if type(shape) in (list, tuple):
|
|
|
|
return shape
|
|
|
|
elif isinstance(shape, ScalarShape):
|
|
|
|
return ()
|
|
|
|
else:
|
|
|
|
raise TypeError(type(shape))
|
2018-12-06 06:21:38 -08:00
|
|
|
|
|
|
|
|
|
|
|
def _cast_to_shape(value, shape, dtype):
|
|
|
|
"""Casts `value` to the correct Python type for `shape` and `dtype`."""
|
2019-05-19 12:44:51 -07:00
|
|
|
if shape is NUMPY_SCALAR_SHAPE:
|
|
|
|
# explicitly cast to NumPy scalar in case `value` is a Python scalar.
|
2019-09-27 11:17:55 -07:00
|
|
|
return onp.dtype(dtype).type(value)
|
2019-05-19 12:44:51 -07:00
|
|
|
elif shape is PYTHON_SCALAR_SHAPE:
|
|
|
|
# explicitly cast to Python scalar via https://stackoverflow.com/a/11389998
|
|
|
|
return onp.asarray(value).item()
|
|
|
|
elif type(shape) in (list, tuple):
|
|
|
|
assert onp.shape(value) == tuple(shape)
|
2018-12-06 06:21:38 -08:00
|
|
|
return value
|
|
|
|
else:
|
2019-05-19 12:44:51 -07:00
|
|
|
raise TypeError(type(shape))
|
2018-12-06 06:21:38 -08:00
|
|
|
|
|
|
|
|
2019-03-18 14:15:34 -07:00
|
|
|
def dtype_str(dtype):
|
|
|
|
return onp.dtype(dtype).name
|
|
|
|
|
|
|
|
|
2018-11-17 18:03:33 -08:00
|
|
|
def format_shape_dtype_string(shape, dtype):
|
2019-05-19 12:44:51 -07:00
|
|
|
if shape is NUMPY_SCALAR_SHAPE:
|
2019-03-18 14:15:34 -07:00
|
|
|
return dtype_str(dtype)
|
2019-05-19 12:44:51 -07:00
|
|
|
elif shape is PYTHON_SCALAR_SHAPE:
|
|
|
|
return 'py' + dtype_str(dtype)
|
|
|
|
elif type(shape) in (list, tuple):
|
2018-11-17 18:03:33 -08:00
|
|
|
shapestr = ','.join(str(dim) for dim in shape)
|
2019-05-19 12:44:51 -07:00
|
|
|
return '{}[{}]'.format(dtype_str(dtype), shapestr)
|
|
|
|
elif type(shape) is int:
|
|
|
|
return '{}[{},]'.format(dtype_str(dtype), shape)
|
2019-12-17 17:20:51 -05:00
|
|
|
elif isinstance(shape, onp.ndarray):
|
|
|
|
return '{}[{}]'.format(dtype_str(dtype), shape)
|
2019-05-19 12:44:51 -07:00
|
|
|
else:
|
|
|
|
raise TypeError(type(shape))
|
2018-11-17 18:03:33 -08:00
|
|
|
|
|
|
|
|
|
|
|
def _rand_dtype(rand, shape, dtype, scale=1., post=lambda x: x):
|
|
|
|
"""Produce random values given shape, dtype, scale, and post-processor.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
rand: a function for producing random values of a given shape, e.g. a
|
|
|
|
bound version of either onp.RandomState.randn or onp.RandomState.rand.
|
|
|
|
shape: a shape value as a tuple of positive integers.
|
|
|
|
dtype: a numpy dtype.
|
|
|
|
scale: optional, a multiplicative scale for the random values (default 1).
|
|
|
|
post: optional, a callable for post-processing the random values (default
|
|
|
|
identity).
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
An ndarray of the given shape and dtype using random values based on a call
|
|
|
|
to rand but scaled, converted to the appropriate dtype, and post-processed.
|
|
|
|
"""
|
2018-12-06 06:21:38 -08:00
|
|
|
r = lambda: onp.asarray(scale * rand(*_dims_of_shape(shape)), dtype)
|
2019-11-15 10:02:51 -05:00
|
|
|
if dtypes.issubdtype(dtype, onp.complexfloating):
|
2018-11-17 18:03:33 -08:00
|
|
|
vals = r() + 1.0j * r()
|
|
|
|
else:
|
|
|
|
vals = r()
|
2018-12-06 06:21:38 -08:00
|
|
|
return _cast_to_shape(onp.asarray(post(vals), dtype), shape, dtype)
|
2018-11-17 18:03:33 -08:00
|
|
|
|
|
|
|
|
2019-12-03 10:05:51 -05:00
|
|
|
def rand_default(scale=3):
|
2018-11-17 18:03:33 -08:00
|
|
|
randn = npr.RandomState(0).randn
|
2019-12-03 10:05:51 -05:00
|
|
|
return partial(_rand_dtype, randn, scale=scale)
|
2018-11-17 18:03:33 -08:00
|
|
|
|
|
|
|
|
|
|
|
def rand_nonzero():
|
2019-11-20 22:43:46 -05:00
|
|
|
post = lambda x: onp.where(x == 0, onp.array(1, dtype=x.dtype), x)
|
2018-11-17 18:03:33 -08:00
|
|
|
randn = npr.RandomState(0).randn
|
|
|
|
return partial(_rand_dtype, randn, scale=3, post=post)
|
|
|
|
|
|
|
|
|
|
|
|
def rand_positive():
|
|
|
|
post = lambda x: x + 1
|
|
|
|
rand = npr.RandomState(0).rand
|
|
|
|
return partial(_rand_dtype, rand, scale=2, post=post)
|
|
|
|
|
|
|
|
|
|
|
|
def rand_small():
|
|
|
|
randn = npr.RandomState(0).randn
|
|
|
|
return partial(_rand_dtype, randn, scale=1e-3)
|
|
|
|
|
|
|
|
|
|
|
|
def rand_not_small():
|
|
|
|
post = lambda x: x + onp.where(x > 0, 10., -10.)
|
|
|
|
randn = npr.RandomState(0).randn
|
|
|
|
return partial(_rand_dtype, randn, scale=3., post=post)
|
|
|
|
|
|
|
|
|
|
|
|
def rand_small_positive():
|
|
|
|
rand = npr.RandomState(0).rand
|
|
|
|
return partial(_rand_dtype, rand, scale=2e-5)
|
|
|
|
|
2019-01-14 15:28:53 -05:00
|
|
|
def rand_uniform(low=0.0, high=1.0):
|
|
|
|
assert low < high
|
|
|
|
rand = npr.RandomState(0).rand
|
2019-01-14 16:39:30 -05:00
|
|
|
post = lambda x: x * (high - low) + low
|
|
|
|
return partial(_rand_dtype, rand, post=post)
|
2019-01-14 15:28:53 -05:00
|
|
|
|
2018-11-17 18:03:33 -08:00
|
|
|
|
|
|
|
def rand_some_equal():
|
|
|
|
randn = npr.RandomState(0).randn
|
|
|
|
rng = npr.RandomState(0)
|
|
|
|
|
|
|
|
def post(x):
|
2018-12-10 08:42:11 -05:00
|
|
|
x_ravel = x.ravel()
|
|
|
|
if len(x_ravel) == 0:
|
|
|
|
return x
|
2018-11-17 18:03:33 -08:00
|
|
|
flips = rng.rand(*onp.shape(x)) < 0.5
|
2018-12-10 08:42:11 -05:00
|
|
|
return onp.where(flips, x_ravel[0], x)
|
2018-11-17 18:03:33 -08:00
|
|
|
|
|
|
|
return partial(_rand_dtype, randn, scale=100., post=post)
|
|
|
|
|
|
|
|
|
|
|
|
def rand_some_inf():
|
|
|
|
"""Return a random sampler that produces infinities in floating types."""
|
|
|
|
rng = npr.RandomState(1)
|
|
|
|
base_rand = rand_default()
|
|
|
|
|
2019-09-23 10:04:31 -07:00
|
|
|
"""
|
|
|
|
TODO: Complex numbers are not correctly tested
|
|
|
|
If blocks should be switched in order, and relevant tests should be fixed
|
|
|
|
"""
|
2018-11-17 18:03:33 -08:00
|
|
|
def rand(shape, dtype):
|
|
|
|
"""The random sampler function."""
|
2019-11-15 10:02:51 -05:00
|
|
|
if not dtypes.issubdtype(dtype, onp.floating):
|
2018-11-17 18:03:33 -08:00
|
|
|
# only float types have inf
|
|
|
|
return base_rand(shape, dtype)
|
|
|
|
|
2019-11-15 10:02:51 -05:00
|
|
|
if dtypes.issubdtype(dtype, onp.complexfloating):
|
2019-05-07 15:05:37 -04:00
|
|
|
base_dtype = onp.real(onp.array(0, dtype=dtype)).dtype
|
2019-12-06 14:49:27 -05:00
|
|
|
out = (rand(shape, base_dtype) +
|
|
|
|
onp.array(1j, dtype) * rand(shape, base_dtype))
|
|
|
|
return _cast_to_shape(out, shape, dtype)
|
2019-05-07 15:05:37 -04:00
|
|
|
|
2018-12-06 06:21:38 -08:00
|
|
|
dims = _dims_of_shape(shape)
|
|
|
|
posinf_flips = rng.rand(*dims) < 0.1
|
|
|
|
neginf_flips = rng.rand(*dims) < 0.1
|
2018-11-17 18:03:33 -08:00
|
|
|
|
|
|
|
vals = base_rand(shape, dtype)
|
2019-11-20 22:43:46 -05:00
|
|
|
vals = onp.where(posinf_flips, onp.array(onp.inf, dtype=dtype), vals)
|
|
|
|
vals = onp.where(neginf_flips, onp.array(-onp.inf, dtype=dtype), vals)
|
2018-11-17 18:03:33 -08:00
|
|
|
|
2018-12-06 06:21:38 -08:00
|
|
|
return _cast_to_shape(onp.asarray(vals, dtype=dtype), shape, dtype)
|
2018-11-17 18:03:33 -08:00
|
|
|
|
|
|
|
return rand
|
|
|
|
|
2019-09-22 21:38:34 -07:00
|
|
|
def rand_some_nan():
|
|
|
|
"""Return a random sampler that produces nans in floating types."""
|
|
|
|
rng = npr.RandomState(1)
|
|
|
|
base_rand = rand_default()
|
|
|
|
|
|
|
|
def rand(shape, dtype):
|
|
|
|
"""The random sampler function."""
|
2019-11-15 10:02:51 -05:00
|
|
|
if dtypes.issubdtype(dtype, onp.complexfloating):
|
2019-09-22 21:38:34 -07:00
|
|
|
base_dtype = onp.real(onp.array(0, dtype=dtype)).dtype
|
2019-12-06 14:49:27 -05:00
|
|
|
out = (rand(shape, base_dtype) +
|
|
|
|
onp.array(1j, dtype) * rand(shape, base_dtype))
|
|
|
|
return _cast_to_shape(out, shape, dtype)
|
2019-09-22 21:38:34 -07:00
|
|
|
|
2019-11-15 10:02:51 -05:00
|
|
|
if not dtypes.issubdtype(dtype, onp.floating):
|
2019-09-23 08:53:49 -07:00
|
|
|
# only float types have inf
|
|
|
|
return base_rand(shape, dtype)
|
|
|
|
|
2019-09-22 21:38:34 -07:00
|
|
|
dims = _dims_of_shape(shape)
|
|
|
|
nan_flips = rng.rand(*dims) < 0.1
|
|
|
|
|
|
|
|
vals = base_rand(shape, dtype)
|
2019-11-20 22:43:46 -05:00
|
|
|
vals = onp.where(nan_flips, onp.array(onp.nan, dtype=dtype), vals)
|
2019-09-22 21:38:34 -07:00
|
|
|
|
|
|
|
return _cast_to_shape(onp.asarray(vals, dtype=dtype), shape, dtype)
|
2018-11-17 18:03:33 -08:00
|
|
|
|
|
|
|
return rand
|
|
|
|
|
2019-05-07 15:05:37 -04:00
|
|
|
def rand_some_inf_and_nan():
|
|
|
|
"""Return a random sampler that produces infinities in floating types."""
|
|
|
|
rng = npr.RandomState(1)
|
|
|
|
base_rand = rand_default()
|
|
|
|
|
2019-09-23 10:04:31 -07:00
|
|
|
"""
|
|
|
|
TODO: Complex numbers are not correctly tested
|
|
|
|
If blocks should be switched in order, and relevant tests should be fixed
|
|
|
|
"""
|
2019-05-07 15:05:37 -04:00
|
|
|
def rand(shape, dtype):
|
|
|
|
"""The random sampler function."""
|
2019-11-15 10:02:51 -05:00
|
|
|
if not dtypes.issubdtype(dtype, onp.floating):
|
2019-05-07 15:05:37 -04:00
|
|
|
# only float types have inf
|
|
|
|
return base_rand(shape, dtype)
|
|
|
|
|
2019-11-15 10:02:51 -05:00
|
|
|
if dtypes.issubdtype(dtype, onp.complexfloating):
|
2019-05-07 15:05:37 -04:00
|
|
|
base_dtype = onp.real(onp.array(0, dtype=dtype)).dtype
|
2019-12-06 14:49:27 -05:00
|
|
|
out = (rand(shape, base_dtype) +
|
|
|
|
onp.array(1j, dtype) * rand(shape, base_dtype))
|
|
|
|
return _cast_to_shape(out, shape, dtype)
|
2019-05-07 15:05:37 -04:00
|
|
|
|
|
|
|
dims = _dims_of_shape(shape)
|
|
|
|
posinf_flips = rng.rand(*dims) < 0.1
|
|
|
|
neginf_flips = rng.rand(*dims) < 0.1
|
|
|
|
nan_flips = rng.rand(*dims) < 0.1
|
|
|
|
|
|
|
|
vals = base_rand(shape, dtype)
|
2019-11-20 22:43:46 -05:00
|
|
|
vals = onp.where(posinf_flips, onp.array(onp.inf, dtype=dtype), vals)
|
|
|
|
vals = onp.where(neginf_flips, onp.array(-onp.inf, dtype=dtype), vals)
|
|
|
|
vals = onp.where(nan_flips, onp.array(onp.nan, dtype=dtype), vals)
|
2019-05-07 15:05:37 -04:00
|
|
|
|
|
|
|
return _cast_to_shape(onp.asarray(vals, dtype=dtype), shape, dtype)
|
|
|
|
|
|
|
|
return rand
|
2018-11-17 18:03:33 -08:00
|
|
|
|
|
|
|
# TODO(mattjj): doesn't handle complex types
|
|
|
|
def rand_some_zero():
|
|
|
|
"""Return a random sampler that produces some zeros."""
|
|
|
|
rng = npr.RandomState(1)
|
|
|
|
base_rand = rand_default()
|
|
|
|
|
|
|
|
def rand(shape, dtype):
|
|
|
|
"""The random sampler function."""
|
2018-12-06 06:21:38 -08:00
|
|
|
dims = _dims_of_shape(shape)
|
|
|
|
zeros = rng.rand(*dims) < 0.5
|
2018-11-17 18:03:33 -08:00
|
|
|
|
|
|
|
vals = base_rand(shape, dtype)
|
2019-11-20 22:43:46 -05:00
|
|
|
vals = onp.where(zeros, onp.array(0, dtype=dtype), vals)
|
2018-11-17 18:03:33 -08:00
|
|
|
|
2018-12-06 06:21:38 -08:00
|
|
|
return _cast_to_shape(onp.asarray(vals, dtype=dtype), shape, dtype)
|
2018-11-17 18:03:33 -08:00
|
|
|
|
|
|
|
return rand
|
|
|
|
|
|
|
|
|
2019-01-09 21:26:22 -05:00
|
|
|
def rand_int(low, high=None):
|
|
|
|
randint = npr.RandomState(0).randint
|
|
|
|
def fn(shape, dtype):
|
|
|
|
return randint(low, high=high, size=shape, dtype=dtype)
|
|
|
|
return fn
|
|
|
|
|
2018-11-17 18:03:33 -08:00
|
|
|
def rand_bool():
|
|
|
|
rng = npr.RandomState(0)
|
2018-12-06 06:21:38 -08:00
|
|
|
def generator(shape, dtype):
|
|
|
|
return _cast_to_shape(rng.rand(*_dims_of_shape(shape)) < 0.5, shape, dtype)
|
|
|
|
return generator
|
2018-11-17 18:03:33 -08:00
|
|
|
|
|
|
|
def check_raises(thunk, err_type, msg):
|
|
|
|
try:
|
|
|
|
thunk()
|
|
|
|
assert False
|
|
|
|
except err_type as e:
|
2018-12-06 21:47:47 -05:00
|
|
|
assert str(e).startswith(msg), "\n{}\n\n{}\n".format(e, msg)
|
2018-11-17 18:03:33 -08:00
|
|
|
|
2019-11-16 13:51:42 -05:00
|
|
|
def check_raises_regexp(thunk, err_type, pattern):
|
|
|
|
try:
|
|
|
|
thunk()
|
|
|
|
assert False
|
|
|
|
except err_type as e:
|
|
|
|
assert re.match(pattern, str(e)), "{}\n\n{}\n".format(e, pattern)
|
|
|
|
|
2019-12-10 00:38:18 -08:00
|
|
|
|
|
|
|
def _iter_eqns(jaxpr):
|
|
|
|
for eqn in jaxpr.eqns:
|
|
|
|
yield eqn
|
2020-01-07 13:11:32 -08:00
|
|
|
for subjaxpr, _ in eqn.bound_subjaxprs:
|
2019-12-10 00:38:18 -08:00
|
|
|
for sub_eqn in _iter_eqns(subjaxpr):
|
|
|
|
yield sub_eqn
|
|
|
|
|
|
|
|
def assert_dot_precision(expected_precision, fun, *args):
|
|
|
|
jaxpr = api.make_jaxpr(fun)(*args)
|
|
|
|
precisions = [eqn.params['precision'] for eqn in _iter_eqns(jaxpr.jaxpr)
|
|
|
|
if eqn.primitive == lax.dot_general_p]
|
|
|
|
for precision in precisions:
|
|
|
|
msg = "Unexpected precision: {} != {}".format(expected_precision, precision)
|
|
|
|
assert precision == expected_precision, msg
|
|
|
|
|
|
|
|
|
2019-11-11 12:51:15 -08:00
|
|
|
_CACHED_INDICES = {}
|
|
|
|
|
2018-12-06 18:02:43 -05:00
|
|
|
def cases_from_list(xs):
|
2018-12-06 18:30:59 -05:00
|
|
|
xs = list(xs)
|
2019-11-11 12:51:15 -08:00
|
|
|
n = len(xs)
|
|
|
|
k = min(n, FLAGS.num_generated_cases)
|
|
|
|
# Random sampling for every parameterized test is expensive. Do it once and
|
|
|
|
# cache the result.
|
|
|
|
indices = _CACHED_INDICES.get(n)
|
|
|
|
if indices is None:
|
|
|
|
rng = npr.RandomState(42)
|
|
|
|
_CACHED_INDICES[n] = indices = rng.permutation(n)
|
|
|
|
return [xs[i] for i in indices[:k]]
|
2018-12-06 17:31:52 -05:00
|
|
|
|
2018-12-06 18:02:43 -05:00
|
|
|
def cases_from_gens(*gens):
|
|
|
|
sizes = [1, 3, 10]
|
2018-12-06 18:30:59 -05:00
|
|
|
cases_per_size = int(FLAGS.num_generated_cases / len(sizes)) + 1
|
2018-12-06 18:02:43 -05:00
|
|
|
for size in sizes:
|
2020-01-08 13:17:55 -05:00
|
|
|
for i in range(cases_per_size):
|
2018-12-06 18:02:43 -05:00
|
|
|
yield ('_{}_{}'.format(size, i),) + tuple(gen(size) for gen in gens)
|
2018-12-06 17:31:52 -05:00
|
|
|
|
|
|
|
|
2018-11-17 18:03:33 -08:00
|
|
|
class JaxTestCase(parameterized.TestCase):
|
|
|
|
"""Base class for JAX tests including numerical checks and boilerplate."""
|
|
|
|
|
|
|
|
def assertArraysAllClose(self, x, y, check_dtypes, atol=None, rtol=None):
|
|
|
|
"""Assert that x and y are close (up to numerical tolerances)."""
|
2019-03-14 21:59:31 -04:00
|
|
|
self.assertEqual(x.shape, y.shape)
|
2019-11-16 13:51:42 -05:00
|
|
|
atol = max(tolerance(_dtype(x), atol), tolerance(_dtype(y), atol))
|
|
|
|
rtol = max(tolerance(_dtype(x), rtol), tolerance(_dtype(y), rtol))
|
2018-11-17 18:03:33 -08:00
|
|
|
|
2019-11-20 22:43:46 -05:00
|
|
|
_assert_numpy_allclose(x, y, atol=atol, rtol=rtol)
|
2018-11-17 18:03:33 -08:00
|
|
|
|
|
|
|
if check_dtypes:
|
|
|
|
self.assertDtypesMatch(x, y)
|
|
|
|
|
|
|
|
def assertDtypesMatch(self, x, y):
|
|
|
|
if FLAGS.jax_enable_x64:
|
2019-12-09 21:18:39 -05:00
|
|
|
self.assertEqual(_dtype(x), _dtype(y))
|
2018-11-17 18:03:33 -08:00
|
|
|
|
|
|
|
def assertAllClose(self, x, y, check_dtypes, atol=None, rtol=None):
|
|
|
|
"""Assert that x and y, either arrays or nested tuples/lists, are close."""
|
2019-04-24 21:31:15 -07:00
|
|
|
if isinstance(x, dict):
|
2019-01-07 08:54:14 -08:00
|
|
|
self.assertIsInstance(y, dict)
|
|
|
|
self.assertEqual(set(x.keys()), set(y.keys()))
|
|
|
|
for k in x.keys():
|
|
|
|
self.assertAllClose(x[k], y[k], check_dtypes, atol=atol, rtol=rtol)
|
2019-04-24 21:31:15 -07:00
|
|
|
elif is_sequence(x) and not hasattr(x, '__array__'):
|
|
|
|
self.assertTrue(is_sequence(y) and not hasattr(y, '__array__'))
|
|
|
|
self.assertEqual(len(x), len(y))
|
|
|
|
for x_elt, y_elt in zip(x, y):
|
|
|
|
self.assertAllClose(x_elt, y_elt, check_dtypes, atol=atol, rtol=rtol)
|
|
|
|
elif hasattr(x, '__array__') or onp.isscalar(x):
|
|
|
|
self.assertTrue(hasattr(y, '__array__') or onp.isscalar(y))
|
2019-12-09 21:18:39 -05:00
|
|
|
if check_dtypes:
|
|
|
|
self.assertDtypesMatch(x, y)
|
2018-11-17 18:03:33 -08:00
|
|
|
x = onp.asarray(x)
|
|
|
|
y = onp.asarray(y)
|
2019-12-09 21:18:39 -05:00
|
|
|
self.assertArraysAllClose(x, y, check_dtypes=False, atol=atol, rtol=rtol)
|
2019-09-22 15:32:12 -07:00
|
|
|
elif x == y:
|
2019-11-16 13:51:42 -05:00
|
|
|
return
|
2019-04-24 21:31:15 -07:00
|
|
|
else:
|
|
|
|
raise TypeError((type(x), type(y)))
|
2018-11-17 18:03:33 -08:00
|
|
|
|
2019-11-26 13:56:58 +01:00
|
|
|
def assertMultiLineStrippedEqual(self, expected, what):
|
|
|
|
"""Asserts two strings are equal, after stripping each line."""
|
|
|
|
ignore_space_re = re.compile(r'\s*\n\s*')
|
|
|
|
expected_clean = re.sub(ignore_space_re, '\n', expected.strip())
|
|
|
|
what_clean = re.sub(ignore_space_re, '\n', what.strip())
|
2019-11-26 14:05:08 +01:00
|
|
|
self.assertMultiLineEqual(expected_clean, what_clean,
|
|
|
|
msg="Expecting\n"+expected)
|
2019-11-26 08:18:53 +01:00
|
|
|
|
2018-11-17 18:03:33 -08:00
|
|
|
def _CompileAndCheck(self, fun, args_maker, check_dtypes,
|
|
|
|
rtol=None, atol=None):
|
|
|
|
"""Helper method for running JAX compilation and allclose assertions."""
|
|
|
|
args = args_maker()
|
|
|
|
|
|
|
|
def wrapped_fun(*args):
|
|
|
|
self.assertTrue(python_should_be_executing)
|
|
|
|
return fun(*args)
|
|
|
|
|
|
|
|
python_should_be_executing = True
|
|
|
|
python_ans = fun(*args)
|
|
|
|
|
2019-12-02 14:43:43 -05:00
|
|
|
python_shapes = tree_map(lambda x: onp.shape(x), python_ans)
|
|
|
|
onp_shapes = tree_map(lambda x: onp.shape(onp.asarray(x)), python_ans)
|
|
|
|
self.assertEqual(python_shapes, onp_shapes)
|
|
|
|
|
2019-09-25 15:59:52 +02:00
|
|
|
cache_misses = xla.xla_primitive_callable.cache_info().misses
|
|
|
|
python_ans = fun(*args)
|
|
|
|
self.assertEqual(
|
|
|
|
cache_misses, xla.xla_primitive_callable.cache_info().misses,
|
|
|
|
"Compilation detected during second call of {} in op-by-op "
|
|
|
|
"mode.".format(fun))
|
|
|
|
|
2018-11-17 18:03:33 -08:00
|
|
|
cfun = api.jit(wrapped_fun)
|
|
|
|
python_should_be_executing = True
|
|
|
|
monitored_ans = cfun(*args)
|
|
|
|
|
|
|
|
python_should_be_executing = False
|
|
|
|
compiled_ans = cfun(*args)
|
|
|
|
|
2019-11-16 13:51:42 -05:00
|
|
|
self.assertAllClose(python_ans, monitored_ans, check_dtypes, atol, rtol)
|
|
|
|
self.assertAllClose(python_ans, compiled_ans, check_dtypes, atol, rtol)
|
2018-11-17 18:03:33 -08:00
|
|
|
|
|
|
|
args = args_maker()
|
|
|
|
|
|
|
|
python_should_be_executing = True
|
|
|
|
python_ans = fun(*args)
|
|
|
|
|
|
|
|
python_should_be_executing = False
|
|
|
|
compiled_ans = cfun(*args)
|
|
|
|
|
2019-11-16 13:51:42 -05:00
|
|
|
self.assertAllClose(python_ans, compiled_ans, check_dtypes, atol, rtol)
|
2018-11-17 18:03:33 -08:00
|
|
|
|
2019-03-22 17:09:35 -07:00
|
|
|
def _CheckAgainstNumpy(self, numpy_reference_op, lax_op, args_maker,
|
2019-11-16 13:51:42 -05:00
|
|
|
check_dtypes=False, tol=None):
|
2018-11-17 18:03:33 -08:00
|
|
|
args = args_maker()
|
|
|
|
numpy_ans = numpy_reference_op(*args)
|
2018-12-30 18:07:50 -08:00
|
|
|
lax_ans = lax_op(*args)
|
2019-11-20 22:43:46 -05:00
|
|
|
self.assertAllClose(numpy_ans, lax_ans, check_dtypes=check_dtypes,
|
2018-11-17 18:03:33 -08:00
|
|
|
atol=tol, rtol=tol)
|