rocm_jax/tests/pallas/tpu/pallas_random_test.py

155 lines
5.5 KiB
Python
Raw Normal View History

# Copyright 2024 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for random ops in Pallas + Mosaic."""
from absl.testing import absltest
from absl.testing import parameterized
import jax
from jax import random as jax_random
from jax._src import test_util as jtu
from jax._src.pallas.mosaic import core as tpu_core
from jax._src.pallas.mosaic import random as plrandom
from jax.experimental import pallas as pl
from jax.experimental.pallas import tpu as pltpu
import jax.numpy as jnp
import numpy as np
jax.config.parse_flags_with_absl()
class PRNGTest(jtu.JaxTestCase):
def setUp(self):
if not jtu.test_device_matches(["tpu"]):
self.skipTest("Need TPU devices")
super().setUp()
def test_pallas_key_raise_not_implemented_outside_of_kernel(self):
key = jax_random.key(0, impl="rbg")
pallas_key = plrandom.to_pallas_key(key)
# Using a pallas key outside of a kernel should raise an error when
# trying to lower TPU-specific ops to XLA.
# TODO(justinfu): Make this error more specific to pallas PRNG usage.
with self.assertRaisesRegex(NotImplementedError,
"MLIR translation rule .* not found"):
jax.random.uniform(
pallas_key, shape=(1,), minval=0.0, maxval=1.0)
def test_seeded_reproducibility(self):
# Test whether generating random bits with the same seed
# produces the same result (and different seeds produce
# different results).
def seeded_body(seed: int):
def body(o_ref):
pltpu.prng_seed(seed)
o_ref[...] = pltpu.prng_random_bits(o_ref[...].shape)
return body
out = jax.ShapeDtypeStruct((8, 128), jnp.int32)
result_1a = pl.pallas_call(seeded_body(0), out_shape=out)()
result_1b = pl.pallas_call(seeded_body(0), out_shape=out)()
result_2 = pl.pallas_call(seeded_body(1), out_shape=out)()
with self.subTest("same_seed_same_result"):
np.testing.assert_array_equal(result_1a, result_1b)
with self.subTest("diff_seed_diff_result"):
np.testing.assert_array_compare(np.not_equal, result_1a, result_2)
@parameterized.parameters(
((32, 256),),
((8, 16),),
)
def test_prng_non_vreg_shape_output(self, shape):
# Tests that RNG generation works with output shapes
# not equal to a native-sized VREG.
# This test makes sure that vector layout tiling
# is implemented correctly.
def body(o_ref):
pltpu.prng_seed(0)
samples = pltpu.prng_random_bits(o_ref[...].shape)
o_ref[...] = samples
o_shape = jax.ShapeDtypeStruct(shape, jnp.int32)
result = pl.pallas_call(body, out_shape=o_shape)()
# Check that random_bits generates (mostly) unique values.
unique_frac = float(len(jnp.unique(result))) / np.prod(shape)
self.assertGreater(unique_frac, 0.99)
self.assertLessEqual(jnp.max(result), np.iinfo(jnp.int32).max)
self.assertGreaterEqual(jnp.min(result), np.iinfo(jnp.int32).min)
def test_stateful_uniform_sample(self):
# Test stateful RNG using the jax.random API wrappers.
def body(key_ref, o_ref):
plrandom.set_seed(key_ref[...])
o_ref[...] = plrandom.uniform(
shape=o_ref[...].shape, minval=0.0, maxval=1.0)
rbg_key = jax_random.key(0, impl="rbg")
key = plrandom.to_pallas_key(rbg_key)
o_shape = jax.ShapeDtypeStruct((8, 128), jnp.float32)
result = pl.pallas_call(
body,
in_specs=[pl.BlockSpec(memory_space=tpu_core.TPUMemorySpace.SMEM)],
out_shape=o_shape,
)(key)
self.assertGreaterEqual(jnp.min(result), 0)
self.assertLessEqual(jnp.max(result), 1.0)
def test_stateless_uniform_sample(self):
# Test keyed RNG using the jax.random API.
def body(key_ref, o_ref):
o_ref[...] = jax_random.uniform(
key_ref[...], shape=o_ref[...].shape, minval=0.0, maxval=1.0
)
rbg_key = jax_random.key(0, impl="rbg")
key = plrandom.to_pallas_key(rbg_key)
o_shape = jax.ShapeDtypeStruct((8, 128), jnp.float32)
result = pl.pallas_call(
body,
in_specs=[pl.BlockSpec(memory_space=tpu_core.TPUMemorySpace.SMEM)],
out_shape=o_shape,
)(key)
self.assertGreaterEqual(jnp.min(result), 0)
self.assertLessEqual(jnp.max(result), 1.0)
def test_fold_in(self):
# Test that folding in a value results in different random numbers.
def body(key_ref, o_ref):
key = key_ref[...]
o_ref[0, ...] = jax_random.uniform(
key, shape=o_ref[0, ...].shape, minval=0.0, maxval=1.0
)
key = jax_random.fold_in(key, 2)
o_ref[1, ...] = jax_random.uniform(
key, shape=o_ref[1, ...].shape, minval=0.0, maxval=1.0
)
rbg_key = jax_random.key(0, impl="rbg")
key = plrandom.to_pallas_key(rbg_key)
o_shape = jax.ShapeDtypeStruct((2, 8, 128), jnp.float32)
result = pl.pallas_call(
body,
in_specs=[pl.BlockSpec(memory_space=tpu_core.TPUMemorySpace.SMEM)],
out_shape=o_shape,
)(key)
result_a = result[0]
result_b = result[1]
np.testing.assert_array_compare(np.not_equal, result_a, result_b)
if __name__ == "__main__":
absltest.main(testLoader=jtu.JaxTestLoader())