rocm_jax/jax/_src/test_util.py

1031 lines
34 KiB
Python
Raw Normal View History

# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from contextlib import contextmanager
import inspect
import functools
from functools import partial
import re
import os
import textwrap
2022-04-21 13:44:12 -07:00
from typing import Dict, List, Generator, Sequence, Tuple, Union
import unittest
import warnings
import zlib
from absl.testing import absltest
from absl.testing import parameterized
import numpy as np
import numpy.random as npr
from jax._src import api
from jax import core
from jax._src import dtypes as _dtypes
from jax import lax
from jax._src.config import flags, bool_env, config
from jax._src.util import prod, unzip2
from jax.tree_util import tree_map, tree_all
from jax._src.lib import xla_bridge
from jax._src import dispatch
2022-04-21 13:44:12 -07:00
from jax._src.public_test_util import ( # noqa: F401
_assert_numpy_allclose, _check_dtypes_match, _default_tolerance, _dtype, check_close, check_grads,
check_jvp, check_vjp, default_gradient_tolerance, default_tolerance, device_under_test, tolerance)
from jax.interpreters import mlir
from jax.experimental.maps import Mesh
# This submodule includes private test utilities that are not exported to
# jax.test_util. Functionality appearing here is for internal use only, and
# may be changed or removed at any time and without any deprecation cycle.
FLAGS = flags.FLAGS
flags.DEFINE_string(
'jax_test_dut', '',
help=
'Describes the device under test in case special consideration is required.'
)
flags.DEFINE_integer(
'num_generated_cases',
int(os.getenv('JAX_NUM_GENERATED_CASES', '10')),
help='Number of generated cases to test')
flags.DEFINE_integer(
'max_cases_sampling_retries',
int(os.getenv('JAX_MAX_CASES_SAMPLING_RETRIES', '100')),
'Number of times a failed test sample should be retried. '
'When an unseen case cannot be generated in this many trials, the '
'sampling process is terminated.'
)
flags.DEFINE_bool(
'jax_skip_slow_tests',
bool_env('JAX_SKIP_SLOW_TESTS', False),
help='Skip tests marked as slow (> 5 sec).'
)
flags.DEFINE_string(
'test_targets', '',
'Regular expression specifying which tests to run, called via re.search on '
'the test name. If empty or unspecified, run all tests.'
)
flags.DEFINE_string(
'exclude_test_targets', '',
'Regular expression specifying which tests NOT to run, called via re.search '
'on the test name. If empty or unspecified, run all tests.'
)
def num_float_bits(dtype):
return _dtypes.finfo(_dtypes.canonicalize_dtype(dtype)).bits
def to_default_dtype(arr):
"""Convert a value to an array with JAX's default dtype.
This is generally used for type conversions of values returned by numpy functions,
to make their dtypes take into account the state of the ``jax_enable_x64`` and
``jax_default_dtype_bits`` flags.
"""
arr = np.asarray(arr)
dtype = _dtypes._default_types.get(arr.dtype.kind)
return arr.astype(_dtypes.canonicalize_dtype(dtype)) if dtype else arr
def with_jax_dtype_defaults(func, use_defaults=True):
"""Return a version of a function with outputs that match JAX's default dtypes.
This is generally used to wrap numpy functions within tests, in order to make
their default output dtypes match those of corresponding JAX functions, taking
into account the state of the ``jax_enable_x64`` and ``jax_default_dtype_bits``
flags.
Args:
use_defaults : whether to convert any given output to the default dtype. May be
a single boolean, in which case it specifies the conversion for all outputs,
or may be a a pytree with the same structure as the function output.
"""
@functools.wraps(func)
def wrapped(*args, **kwargs):
result = func(*args, **kwargs)
if isinstance(use_defaults, bool):
return tree_map(to_default_dtype, result) if use_defaults else result
else:
f = lambda arr, use_default: to_default_dtype(arr) if use_default else arr
return tree_map(f, result, use_defaults)
return wrapped
def is_sequence(x):
try:
iter(x)
except TypeError:
return False
else:
return True
def _normalize_tolerance(tol):
tol = tol or 0
if isinstance(tol, dict):
return {np.dtype(k): v for k, v in tol.items()}
else:
return {k: tol for k in _default_tolerance}
def join_tolerance(tol1, tol2):
tol1 = _normalize_tolerance(tol1)
tol2 = _normalize_tolerance(tol2)
out = tol1
for k, v in tol2.items():
out[k] = max(v, tol1.get(k, 0))
return out
def check_eq(xs, ys, err_msg=''):
assert_close = partial(_assert_numpy_allclose, err_msg=err_msg)
2022-04-01 14:51:54 -07:00
tree_all(tree_map(assert_close, xs, ys))
@contextmanager
def count_device_put():
device_put = dispatch.device_put
count = [0]
def device_put_and_count(*args, **kwargs):
count[0] += 1
return device_put(*args, **kwargs)
dispatch.device_put = device_put_and_count
try:
yield count
finally:
dispatch.device_put = device_put
@contextmanager
def count_primitive_compiles():
dispatch.xla_primitive_callable.cache_clear()
count = [-1]
try:
yield count
finally:
count[0] = dispatch.xla_primitive_callable.cache_info().misses
@contextmanager
def count_jit_and_pmap_compiles():
# No need to clear any caches since we generally jit and pmap fresh callables
# in tests.
mlir_jaxpr_subcomp = mlir.jaxpr_subcomp
count = [0]
def mlir_jaxpr_subcomp_and_count(*args, **kwargs):
count[0] += 1
return mlir_jaxpr_subcomp(*args, **kwargs)
mlir.jaxpr_subcomp = mlir_jaxpr_subcomp_and_count
try:
yield count
finally:
mlir.jaxpr_subcomp = mlir_jaxpr_subcomp
@contextmanager
def assert_num_jit_and_pmap_compilations(times):
with count_jit_and_pmap_compiles() as count:
yield
if count[0] != times:
raise AssertionError(f"Expected exactly {times} XLA compilations, "
f"but executed {count[0]}")
def if_device_under_test(device_type: Union[str, Sequence[str]],
if_true, if_false):
"""Chooses `if_true` of `if_false` based on device_under_test."""
if device_under_test() in ([device_type] if isinstance(device_type, str)
else device_type):
return if_true
else:
return if_false
def supported_dtypes():
if device_under_test() == "tpu":
types = {np.bool_, np.int8, np.int16, np.int32, np.uint8, np.uint16,
np.uint32, _dtypes.bfloat16, np.float16, np.float32, np.complex64}
elif device_under_test() == "iree":
types = {np.bool_, np.int8, np.int16, np.int32, np.uint8, np.uint16,
np.uint32, np.float32}
else:
types = {np.bool_, np.int8, np.int16, np.int32, np.int64,
np.uint8, np.uint16, np.uint32, np.uint64,
_dtypes.bfloat16, np.float16, np.float32, np.float64,
np.complex64, np.complex128}
if not config.x64_enabled:
types -= {np.uint64, np.int64, np.float64, np.complex128}
return types
def is_device_rocm():
return xla_bridge.get_backend().platform_version.startswith('rocm')
def is_device_cuda():
return xla_bridge.get_backend().platform_version.startswith('cuda')
def _get_device_tags():
"""returns a set of tags definded for the device under test"""
if is_device_rocm():
device_tags = set([device_under_test(), "rocm"])
elif is_device_cuda():
device_tags = set([device_under_test(), "cuda"])
else:
device_tags = set([device_under_test()])
return device_tags
def skip_on_devices(*disabled_devices):
"""A decorator for test methods to skip the test on certain devices."""
def skip(test_method):
@functools.wraps(test_method)
def test_method_wrapper(self, *args, **kwargs):
device_tags = _get_device_tags()
if device_tags & set(disabled_devices):
test_name = getattr(test_method, '__name__', '[unknown test]')
raise unittest.SkipTest(
f"{test_name} not supported on device with tags {device_tags}.")
return test_method(self, *args, **kwargs)
return test_method_wrapper
return skip
def set_host_platform_device_count(nr_devices: int):
"""Returns a closure that undoes the operation."""
prev_xla_flags = os.getenv("XLA_FLAGS")
flags_str = prev_xla_flags or ""
# Don't override user-specified device count, or other XLA flags.
if "xla_force_host_platform_device_count" not in flags_str:
os.environ["XLA_FLAGS"] = (flags_str +
f" --xla_force_host_platform_device_count={nr_devices}")
# Clear any cached backends so new CPU backend will pick up the env var.
xla_bridge.get_backend.cache_clear()
def undo():
if prev_xla_flags is None:
del os.environ["XLA_FLAGS"]
else:
os.environ["XLA_FLAGS"] = prev_xla_flags
xla_bridge.get_backend.cache_clear()
return undo
def skip_on_flag(flag_name, skip_value):
"""A decorator for test methods to skip the test when flags are set."""
def skip(test_method): # pylint: disable=missing-docstring
@functools.wraps(test_method)
def test_method_wrapper(self, *args, **kwargs):
flag_value = config._read(flag_name)
if flag_value == skip_value:
test_name = getattr(test_method, '__name__', '[unknown test]')
raise unittest.SkipTest(
f"{test_name} not supported when FLAGS.{flag_name} is {flag_value}")
return test_method(self, *args, **kwargs)
return test_method_wrapper
return skip
def format_test_name_suffix(opname, shapes, dtypes):
arg_descriptions = (format_shape_dtype_string(shape, dtype)
for shape, dtype in zip(shapes, dtypes))
return '{}_{}'.format(opname.capitalize(), '_'.join(arg_descriptions))
# We use special symbols, represented as singleton objects, to distinguish
# between NumPy scalars, Python scalars, and 0-D arrays.
class ScalarShape(object):
def __len__(self): return 0
class _NumpyScalar(ScalarShape): pass
class _PythonScalar(ScalarShape): pass
NUMPY_SCALAR_SHAPE = _NumpyScalar()
PYTHON_SCALAR_SHAPE = _PythonScalar()
def _dims_of_shape(shape):
"""Converts `shape` to a tuple of dimensions."""
if type(shape) in (list, tuple):
return shape
elif isinstance(shape, ScalarShape):
return ()
elif np.ndim(shape) == 0:
return (shape,)
else:
raise TypeError(type(shape))
def _cast_to_shape(value, shape, dtype):
"""Casts `value` to the correct Python type for `shape` and `dtype`."""
if shape is NUMPY_SCALAR_SHAPE:
# explicitly cast to NumPy scalar in case `value` is a Python scalar.
return np.dtype(dtype).type(value)
elif shape is PYTHON_SCALAR_SHAPE:
# explicitly cast to Python scalar via https://stackoverflow.com/a/11389998
return np.asarray(value).item()
elif type(shape) in (list, tuple):
assert np.shape(value) == tuple(shape)
return value
elif np.ndim(shape) == 0:
assert np.shape(value) == (shape,)
return value
else:
raise TypeError(type(shape))
def dtype_str(dtype):
return np.dtype(dtype).name
def format_shape_dtype_string(shape, dtype):
if isinstance(shape, np.ndarray):
return f'{dtype_str(dtype)}[{shape}]'
elif isinstance(shape, list):
shape = tuple(shape)
return _format_shape_dtype_string(shape, dtype)
@functools.lru_cache(maxsize=64)
def _format_shape_dtype_string(shape, dtype):
if shape is NUMPY_SCALAR_SHAPE:
return dtype_str(dtype)
elif shape is PYTHON_SCALAR_SHAPE:
return 'py' + dtype_str(dtype)
elif type(shape) is tuple:
shapestr = ','.join(str(dim) for dim in shape)
return '{}[{}]'.format(dtype_str(dtype), shapestr)
elif type(shape) is int:
return '{}[{},]'.format(dtype_str(dtype), shape)
else:
raise TypeError(type(shape))
def _rand_dtype(rand, shape, dtype, scale=1., post=lambda x: x):
"""Produce random values given shape, dtype, scale, and post-processor.
Args:
rand: a function for producing random values of a given shape, e.g. a
bound version of either np.RandomState.randn or np.RandomState.rand.
shape: a shape value as a tuple of positive integers.
dtype: a numpy dtype.
scale: optional, a multiplicative scale for the random values (default 1).
post: optional, a callable for post-processing the random values (default
identity).
Returns:
An ndarray of the given shape and dtype using random values based on a call
to rand but scaled, converted to the appropriate dtype, and post-processed.
"""
2022-02-07 08:59:44 -08:00
if _dtypes.issubdtype(dtype, np.unsignedinteger):
r = lambda: np.asarray(scale * abs(rand(*_dims_of_shape(shape))), dtype)
else:
r = lambda: np.asarray(scale * rand(*_dims_of_shape(shape)), dtype)
if _dtypes.issubdtype(dtype, np.complexfloating):
vals = r() + 1.0j * r()
else:
vals = r()
return _cast_to_shape(np.asarray(post(vals), dtype), shape, dtype)
def rand_fullrange(rng, standardize_nans=False):
"""Random numbers that span the full range of available bits."""
def gen(shape, dtype, post=lambda x: x):
dtype = np.dtype(dtype)
size = dtype.itemsize * np.prod(_dims_of_shape(shape))
vals = rng.randint(0, np.iinfo(np.uint8).max, size=size, dtype=np.uint8)
vals = post(vals).view(dtype).reshape(shape)
# Non-standard NaNs cause errors in numpy equality assertions.
if standardize_nans and np.issubdtype(dtype, np.floating):
vals[np.isnan(vals)] = np.nan
return _cast_to_shape(vals, shape, dtype)
return gen
def rand_default(rng, scale=3):
return partial(_rand_dtype, rng.randn, scale=scale)
def rand_nonzero(rng):
post = lambda x: np.where(x == 0, np.array(1, dtype=x.dtype), x)
return partial(_rand_dtype, rng.randn, scale=3, post=post)
def rand_positive(rng):
post = lambda x: x + 1
return partial(_rand_dtype, rng.rand, scale=2, post=post)
def rand_small(rng):
return partial(_rand_dtype, rng.randn, scale=1e-3)
def rand_not_small(rng, offset=10.):
post = lambda x: x + np.where(x > 0, offset, -offset)
return partial(_rand_dtype, rng.randn, scale=3., post=post)
def rand_small_positive(rng):
return partial(_rand_dtype, rng.rand, scale=2e-5)
def rand_uniform(rng, low=0.0, high=1.0):
assert low < high
post = lambda x: x * (high - low) + low
return partial(_rand_dtype, rng.rand, post=post)
def rand_some_equal(rng):
def post(x):
x_ravel = x.ravel()
if len(x_ravel) == 0:
return x
flips = rng.rand(*np.shape(x)) < 0.5
return np.where(flips, x_ravel[0], x)
return partial(_rand_dtype, rng.randn, scale=100., post=post)
def rand_some_inf(rng):
"""Return a random sampler that produces infinities in floating types."""
base_rand = rand_default(rng)
# TODO: Complex numbers are not correctly tested
# If blocks should be switched in order, and relevant tests should be fixed
def rand(shape, dtype):
"""The random sampler function."""
if not _dtypes.issubdtype(dtype, np.floating):
# only float types have inf
return base_rand(shape, dtype)
if _dtypes.issubdtype(dtype, np.complexfloating):
base_dtype = np.real(np.array(0, dtype=dtype)).dtype
out = (rand(shape, base_dtype) +
np.array(1j, dtype) * rand(shape, base_dtype))
return _cast_to_shape(out, shape, dtype)
dims = _dims_of_shape(shape)
posinf_flips = rng.rand(*dims) < 0.1
neginf_flips = rng.rand(*dims) < 0.1
vals = base_rand(shape, dtype)
vals = np.where(posinf_flips, np.array(np.inf, dtype=dtype), vals)
vals = np.where(neginf_flips, np.array(-np.inf, dtype=dtype), vals)
return _cast_to_shape(np.asarray(vals, dtype=dtype), shape, dtype)
return rand
def rand_some_nan(rng):
"""Return a random sampler that produces nans in floating types."""
base_rand = rand_default(rng)
def rand(shape, dtype):
"""The random sampler function."""
if _dtypes.issubdtype(dtype, np.complexfloating):
base_dtype = np.real(np.array(0, dtype=dtype)).dtype
out = (rand(shape, base_dtype) +
np.array(1j, dtype) * rand(shape, base_dtype))
return _cast_to_shape(out, shape, dtype)
if not _dtypes.issubdtype(dtype, np.floating):
# only float types have inf
return base_rand(shape, dtype)
dims = _dims_of_shape(shape)
r = rng.rand(*dims)
nan_flips = r < 0.1
neg_nan_flips = r < 0.05
vals = base_rand(shape, dtype)
vals = np.where(nan_flips, np.array(np.nan, dtype=dtype), vals)
vals = np.where(neg_nan_flips, np.array(-np.nan, dtype=dtype), vals)
return _cast_to_shape(np.asarray(vals, dtype=dtype), shape, dtype)
return rand
def rand_some_inf_and_nan(rng):
"""Return a random sampler that produces infinities in floating types."""
base_rand = rand_default(rng)
# TODO: Complex numbers are not correctly tested
# If blocks should be switched in order, and relevant tests should be fixed
def rand(shape, dtype):
"""The random sampler function."""
if not _dtypes.issubdtype(dtype, np.floating):
# only float types have inf
return base_rand(shape, dtype)
if _dtypes.issubdtype(dtype, np.complexfloating):
base_dtype = np.real(np.array(0, dtype=dtype)).dtype
out = (rand(shape, base_dtype) +
np.array(1j, dtype) * rand(shape, base_dtype))
return _cast_to_shape(out, shape, dtype)
dims = _dims_of_shape(shape)
posinf_flips = rng.rand(*dims) < 0.1
neginf_flips = rng.rand(*dims) < 0.1
nan_flips = rng.rand(*dims) < 0.1
vals = base_rand(shape, dtype)
vals = np.where(posinf_flips, np.array(np.inf, dtype=dtype), vals)
vals = np.where(neginf_flips, np.array(-np.inf, dtype=dtype), vals)
vals = np.where(nan_flips, np.array(np.nan, dtype=dtype), vals)
return _cast_to_shape(np.asarray(vals, dtype=dtype), shape, dtype)
return rand
# TODO(mattjj): doesn't handle complex types
def rand_some_zero(rng):
"""Return a random sampler that produces some zeros."""
base_rand = rand_default(rng)
def rand(shape, dtype):
"""The random sampler function."""
dims = _dims_of_shape(shape)
zeros = rng.rand(*dims) < 0.5
vals = base_rand(shape, dtype)
vals = np.where(zeros, np.array(0, dtype=dtype), vals)
return _cast_to_shape(np.asarray(vals, dtype=dtype), shape, dtype)
return rand
def rand_int(rng, low=0, high=None):
def fn(shape, dtype):
nonlocal high
if low == 0 and high is None:
if np.issubdtype(dtype, np.integer):
high = np.iinfo(dtype).max
else:
raise ValueError("rand_int requires an explicit `high` value for "
"non-integer types.")
return rng.randint(low, high=high, size=shape, dtype=dtype)
return fn
def rand_unique_int(rng, high=None):
def fn(shape, dtype):
return rng.choice(np.arange(high or prod(shape), dtype=dtype),
size=shape, replace=False)
return fn
def rand_bool(rng):
def generator(shape, dtype):
return _cast_to_shape(rng.rand(*_dims_of_shape(shape)) < 0.5, shape, dtype)
return generator
def check_raises(thunk, err_type, msg):
try:
thunk()
assert False
except err_type as e:
assert str(e).startswith(msg), "\n{}\n\n{}\n".format(e, msg)
def check_raises_regexp(thunk, err_type, pattern):
try:
thunk()
assert False
except err_type as e:
assert re.match(pattern, str(e)), "{}\n\n{}\n".format(e, pattern)
def iter_eqns(jaxpr):
# TODO(necula): why doesn't this search in params?
for eqn in jaxpr.eqns:
yield eqn
for subjaxpr in core.subjaxprs(jaxpr):
yield from iter_eqns(subjaxpr)
def assert_dot_precision(expected_precision, fun, *args):
jaxpr = api.make_jaxpr(fun)(*args)
precisions = [eqn.params['precision'] for eqn in iter_eqns(jaxpr.jaxpr)
if eqn.primitive == lax.dot_general_p]
for precision in precisions:
msg = "Unexpected precision: {} != {}".format(expected_precision, precision)
if isinstance(precision, tuple):
assert precision[0] == expected_precision, msg
assert precision[1] == expected_precision, msg
else:
assert precision == expected_precision, msg
_CACHED_INDICES: Dict[int, Sequence[int]] = {}
def cases_from_list(xs):
xs = list(xs)
n = len(xs)
k = min(n, FLAGS.num_generated_cases)
# Random sampling for every parameterized test is expensive. Do it once and
# cache the result.
indices = _CACHED_INDICES.get(n)
if indices is None:
rng = npr.RandomState(42)
_CACHED_INDICES[n] = indices = rng.permutation(n)
return [xs[i] for i in indices[:k]]
def cases_from_gens(*gens):
sizes = [1, 3, 10]
cases_per_size = int(FLAGS.num_generated_cases / len(sizes)) + 1
for size in sizes:
for i in range(cases_per_size):
yield ('_{}_{}'.format(size, i),) + tuple(gen(size) for gen in gens)
def named_cases_from_sampler(gen):
seen = set()
retries = 0
rng = npr.RandomState(42)
def choose_one(x):
if not isinstance(x, (list, tuple)):
x = list(x)
return [x[rng.randint(len(x))]]
while (len(seen) < FLAGS.num_generated_cases and
retries < FLAGS.max_cases_sampling_retries):
retries += 1
cases = list(gen(choose_one))
if not cases:
continue
if len(cases) > 1:
raise RuntimeError("Generator is expected to only return a single case when sampling")
case = cases[0]
if case["testcase_name"] in seen:
continue
retries = 0
seen.add(case["testcase_name"])
yield case
class JaxTestLoader(absltest.TestLoader):
def getTestCaseNames(self, testCaseClass):
names = super().getTestCaseNames(testCaseClass)
if FLAGS.test_targets:
pattern = re.compile(FLAGS.test_targets)
names = [name for name in names
if pattern.search(f"{testCaseClass.__name__}.{name}")]
if FLAGS.exclude_test_targets:
pattern = re.compile(FLAGS.exclude_test_targets)
names = [name for name in names
if not pattern.search(f"{testCaseClass.__name__}.{name}")]
return names
def with_config(**kwds):
"""Test case decorator for subclasses of JaxTestCase"""
def decorator(cls):
assert inspect.isclass(cls) and issubclass(cls, JaxTestCase), "@with_config can only wrap JaxTestCase class definitions."
cls._default_config = {**JaxTestCase._default_config, **kwds}
return cls
return decorator
class JaxTestCase(parameterized.TestCase):
"""Base class for JAX tests including numerical checks and boilerplate."""
_default_config = {
'jax_enable_checks': True,
'jax_numpy_rank_promotion': 'raise',
'jax_traceback_filtering': 'off',
}
# TODO(mattjj): this obscures the error messages from failures, figure out how
# to re-enable it
# def tearDown(self) -> None:
# assert core.reset_trace_state()
def setUp(self):
super().setUp()
self._original_config = {}
for key, value in self._default_config.items():
self._original_config[key] = config._read(key)
config.update(key, value)
# We use the adler32 hash for two reasons.
# a) it is deterministic run to run, unlike hash() which is randomized.
# b) it returns values in int32 range, which RandomState requires.
self._rng = npr.RandomState(zlib.adler32(self._testMethodName.encode()))
def tearDown(self):
for key, value in self._original_config.items():
config.update(key, value)
super().tearDown()
def rng(self):
return self._rng
def assertArraysEqual(self, x, y, *, check_dtypes=True, err_msg=''):
"""Assert that x and y arrays are exactly equal."""
if check_dtypes:
self.assertDtypesMatch(x, y)
# Work around https://github.com/numpy/numpy/issues/18992
with np.errstate(over='ignore'):
np.testing.assert_array_equal(x, y, err_msg=err_msg)
def assertArraysAllClose(self, x, y, *, check_dtypes=True, atol=None,
rtol=None, err_msg=''):
"""Assert that x and y are close (up to numerical tolerances)."""
self.assertEqual(x.shape, y.shape)
atol = max(tolerance(_dtype(x), atol), tolerance(_dtype(y), atol))
rtol = max(tolerance(_dtype(x), rtol), tolerance(_dtype(y), rtol))
_assert_numpy_allclose(x, y, atol=atol, rtol=rtol, err_msg=err_msg)
if check_dtypes:
self.assertDtypesMatch(x, y)
def assertDtypesMatch(self, x, y, *, canonicalize_dtypes=True):
if not config.x64_enabled and canonicalize_dtypes:
self.assertEqual(_dtypes.canonicalize_dtype(_dtype(x)),
_dtypes.canonicalize_dtype(_dtype(y)))
else:
self.assertEqual(_dtype(x), _dtype(y))
def assertAllClose(self, x, y, *, check_dtypes=True, atol=None, rtol=None,
canonicalize_dtypes=True, err_msg=''):
"""Assert that x and y, either arrays or nested tuples/lists, are close."""
if isinstance(x, dict):
self.assertIsInstance(y, dict)
self.assertEqual(set(x.keys()), set(y.keys()))
for k in x.keys():
self.assertAllClose(x[k], y[k], check_dtypes=check_dtypes, atol=atol,
rtol=rtol, canonicalize_dtypes=canonicalize_dtypes,
err_msg=err_msg)
elif is_sequence(x) and not hasattr(x, '__array__'):
self.assertTrue(is_sequence(y) and not hasattr(y, '__array__'))
self.assertEqual(len(x), len(y))
for x_elt, y_elt in zip(x, y):
self.assertAllClose(x_elt, y_elt, check_dtypes=check_dtypes, atol=atol,
rtol=rtol, canonicalize_dtypes=canonicalize_dtypes,
err_msg=err_msg)
elif hasattr(x, '__array__') or np.isscalar(x):
self.assertTrue(hasattr(y, '__array__') or np.isscalar(y))
if check_dtypes:
self.assertDtypesMatch(x, y, canonicalize_dtypes=canonicalize_dtypes)
x = np.asarray(x)
y = np.asarray(y)
self.assertArraysAllClose(x, y, check_dtypes=False, atol=atol, rtol=rtol,
err_msg=err_msg)
elif x == y:
return
else:
raise TypeError((type(x), type(y)))
def assertMultiLineStrippedEqual(self, expected, what):
"""Asserts two strings are equal, after dedenting and stripping each line."""
expected = textwrap.dedent(expected)
what = textwrap.dedent(what)
ignore_space_re = re.compile(r'\s*\n\s*')
expected_clean = re.sub(ignore_space_re, '\n', expected.strip())
what_clean = re.sub(ignore_space_re, '\n', what.strip())
if what_clean != expected_clean:
# Print it so we can copy-and-paste it into the test
print(f"Found\n{what}\n")
self.assertMultiLineEqual(expected_clean, what_clean,
msg="Found\n{}\nExpecting\n{}".format(what, expected))
def _CompileAndCheck(self, fun, args_maker, *, check_dtypes=True,
rtol=None, atol=None, check_cache_misses=True):
"""Helper method for running JAX compilation and allclose assertions."""
args = args_maker()
def wrapped_fun(*args):
self.assertTrue(python_should_be_executing)
return fun(*args)
python_should_be_executing = True
python_ans = fun(*args)
python_shapes = tree_map(lambda x: np.shape(x), python_ans)
np_shapes = tree_map(lambda x: np.shape(np.asarray(x)), python_ans)
self.assertEqual(python_shapes, np_shapes)
cache_misses = dispatch.xla_primitive_callable.cache_info().misses
python_ans = fun(*args)
if check_cache_misses:
self.assertEqual(
cache_misses, dispatch.xla_primitive_callable.cache_info().misses,
"Compilation detected during second call of {} in op-by-op "
"mode.".format(fun))
cfun = api.jit(wrapped_fun)
python_should_be_executing = True
monitored_ans = cfun(*args)
python_should_be_executing = False
compiled_ans = cfun(*args)
self.assertAllClose(python_ans, monitored_ans, check_dtypes=check_dtypes,
atol=atol, rtol=rtol)
self.assertAllClose(python_ans, compiled_ans, check_dtypes=check_dtypes,
atol=atol, rtol=rtol)
args = args_maker()
python_should_be_executing = True
python_ans = fun(*args)
python_should_be_executing = False
compiled_ans = cfun(*args)
self.assertAllClose(python_ans, compiled_ans, check_dtypes=check_dtypes,
atol=atol, rtol=rtol)
def _CheckAgainstNumpy(self, numpy_reference_op, lax_op, args_maker,
check_dtypes=True, tol=None, atol=None, rtol=None,
canonicalize_dtypes=True):
args = args_maker()
lax_ans = lax_op(*args)
numpy_ans = numpy_reference_op(*args)
self.assertAllClose(numpy_ans, lax_ans, check_dtypes=check_dtypes,
atol=atol or tol, rtol=rtol or tol,
canonicalize_dtypes=canonicalize_dtypes)
class BufferDonationTestCase(JaxTestCase):
assertDeleted = lambda self, x: self._assertDeleted(x, True)
assertNotDeleted = lambda self, x: self._assertDeleted(x, False)
def _assertDeleted(self, x, deleted):
if hasattr(x, "device_buffer"):
self.assertEqual(x.device_buffer.is_deleted(), deleted)
else:
for buffer in x.device_buffers:
self.assertEqual(buffer.is_deleted(), deleted)
@contextmanager
def ignore_warning(**kw):
with warnings.catch_warnings():
warnings.filterwarnings("ignore", **kw)
yield
# -------------------- Mesh parametrization helpers --------------------
MeshSpec = List[Tuple[str, int]]
@contextmanager
def with_mesh(named_shape: MeshSpec) -> Generator[None, None, None]:
"""Test utility for setting up meshes given mesh data from `schedules`."""
# This is similar to the `with_mesh` function above, but isn't a decorator.
axis_names, shape = unzip2(named_shape)
size = prod(shape)
local_devices = list(api.local_devices())
if len(local_devices) < size:
raise unittest.SkipTest(f"Test requires {size} local devices")
mesh_devices = np.array(local_devices[:size]).reshape(shape)
with Mesh(mesh_devices, axis_names):
yield
def with_mesh_from_kwargs(f):
return lambda *args, **kwargs: with_mesh(kwargs['mesh'])(f)(*args, **kwargs)
def with_and_without_mesh(f):
return parameterized.named_parameters(
{"testcase_name": name, "mesh": mesh, "axis_resources": axis_resources}
for name, mesh, axis_resources in (
('', (), ()),
('Mesh', (('x', 2),), (('i', 'x'),))
))(with_mesh_from_kwargs(f))
Add reverse-mode AD support for pjit This is a somewhat big patch, because the transposition process turns out to be quite difficult. The biggest issue appears when we do partial evaluation and we have to add a whole bunch of intermediate values as outputs of the primal computation, but we don't have any partition specs for them! A simple workaround would be to mark all of them as replicated, but that would likely tank performance which is why we didn't go with that option. Instead, we use a newly added XLA option called `allow_spmd_sharding_propagation_to_output` to compile a throwaway executable that lets us query output sharding that XLA considers convenient for the computation. However, there's one more difficulty: XLA's `OpSharding` is much less constrained than our `PartitionSpec`s. In particular, while `PartitionSpec`s can only represent "block permutations" of devices (with blocks deliniated by mesh axes), `OpSharding` allows arbitrary assignment (permutation) of tensor chunks to devices. This means that not every `OpSharding` has a corresponding `PartitionSpec`, but I did implement a (somewhat involved) procedure that should recover one whenever it exists. Unfortunately this makes our support for reverse-mode AD partial, because we might be unable to handle `OpSharding` returned by XLA. But this will only happen if XLA actually comes up with sharding specifications on its own. If it merely propagates the sharding obtained from `PartitionSpec`s into the middle of the computation, then we should be good. In any case, if we end up seeing failures in this path, we should consider relaxing `PartitionSpec`s, but that would be a pretty large change, so I decided to avoid it unless there's no other way. PiperOrigin-RevId: 399680306
2021-09-29 07:19:28 -07:00
old_spmd_lowering_flag = None
def set_spmd_lowering_flag(val: bool):
global old_spmd_lowering_flag
old_spmd_lowering_flag = config.experimental_xmap_spmd_lowering
config.update('experimental_xmap_spmd_lowering', val)
def restore_spmd_lowering_flag():
Add reverse-mode AD support for pjit This is a somewhat big patch, because the transposition process turns out to be quite difficult. The biggest issue appears when we do partial evaluation and we have to add a whole bunch of intermediate values as outputs of the primal computation, but we don't have any partition specs for them! A simple workaround would be to mark all of them as replicated, but that would likely tank performance which is why we didn't go with that option. Instead, we use a newly added XLA option called `allow_spmd_sharding_propagation_to_output` to compile a throwaway executable that lets us query output sharding that XLA considers convenient for the computation. However, there's one more difficulty: XLA's `OpSharding` is much less constrained than our `PartitionSpec`s. In particular, while `PartitionSpec`s can only represent "block permutations" of devices (with blocks deliniated by mesh axes), `OpSharding` allows arbitrary assignment (permutation) of tensor chunks to devices. This means that not every `OpSharding` has a corresponding `PartitionSpec`, but I did implement a (somewhat involved) procedure that should recover one whenever it exists. Unfortunately this makes our support for reverse-mode AD partial, because we might be unable to handle `OpSharding` returned by XLA. But this will only happen if XLA actually comes up with sharding specifications on its own. If it merely propagates the sharding obtained from `PartitionSpec`s into the middle of the computation, then we should be good. In any case, if we end up seeing failures in this path, we should consider relaxing `PartitionSpec`s, but that would be a pretty large change, so I decided to avoid it unless there's no other way. PiperOrigin-RevId: 399680306
2021-09-29 07:19:28 -07:00
if old_spmd_lowering_flag is None: return
config.update('experimental_xmap_spmd_lowering', old_spmd_lowering_flag)
old_spmd_manual_lowering_flag = None
def set_spmd_manual_lowering_flag(val: bool):
global old_spmd_manual_lowering_flag
old_spmd_manual_lowering_flag = config.experimental_xmap_spmd_lowering_manual
config.update('experimental_xmap_spmd_lowering_manual', val)
def restore_spmd_manual_lowering_flag():
if old_spmd_manual_lowering_flag is None: return
config.update('experimental_xmap_spmd_lowering_manual', old_spmd_manual_lowering_flag)
def create_global_mesh(mesh_shape, axis_names):
size = prod(mesh_shape)
if len(api.devices()) < size:
raise unittest.SkipTest(f"Test requires {size} global devices.")
devices = sorted(api.devices(), key=lambda d: d.id)
mesh_devices = np.array(devices[:size]).reshape(mesh_shape)
global_mesh = Mesh(mesh_devices, axis_names)
return global_mesh
class _cached_property:
null = object()
def __init__(self, method):
self._method = method
self._value = self.null
def __get__(self, obj, cls):
if self._value is self.null:
self._value = self._method(obj)
return self._value
class _LazyDtypes:
"""A class that unifies lists of supported dtypes.
These could be module-level constants, but device_under_test() is not always
known at import time, so we need to define these lists lazily.
"""
def supported(self, dtypes):
supported = supported_dtypes()
return type(dtypes)(d for d in dtypes if d in supported)
@_cached_property
def floating(self):
return self.supported([np.float32, np.float64])
@_cached_property
def all_floating(self):
return self.supported([_dtypes.bfloat16, np.float16, np.float32, np.float64])
@_cached_property
def integer(self):
return self.supported([np.int32, np.int64])
@_cached_property
def all_integer(self):
return self.supported([np.int8, np.int16, np.int32, np.int64])
@_cached_property
def unsigned(self):
return self.supported([np.uint32, np.uint64])
@_cached_property
def all_unsigned(self):
return self.supported([np.uint8, np.uint16, np.uint32, np.uint64])
@_cached_property
def complex(self):
return self.supported([np.complex64, np.complex128])
@_cached_property
def boolean(self):
return self.supported([np.bool_])
@_cached_property
def inexact(self):
return self.floating + self.complex
@_cached_property
def all_inexact(self):
return self.all_floating + self.complex
@_cached_property
def numeric(self):
return self.floating + self.integer + self.unsigned + self.complex
@_cached_property
def all(self):
return (self.all_floating + self.all_integer + self.all_unsigned +
self.complex + self.boolean)
dtypes = _LazyDtypes()
class DeprecatedJaxTestCase(JaxTestCase):
def __init__(self, *args, **kwargs):
warnings.warn(textwrap.dedent("""\
jax.test_util.JaxTestCase is deprecated as of jax version 0.3.1:
The suggested replacement is to use parametrized.TestCase directly.
For tests that rely on custom asserts such as JaxTestCase.assertAllClose(),
the suggested replacement is to use standard numpy testing utilities such
as np.testing.assert_allclose(), which work directly with JAX arrays."""),
category=DeprecationWarning)
super().__init__(*args, **kwargs)
class DeprecatedJaxTestLoader(JaxTestLoader):
def __init__(self, *args, **kwargs):
warnings.warn(
"jax.test_util.JaxTestLoader is deprecated as of jax version 0.3.1. Use absltest.TestLoader directly.",
category=DeprecationWarning)
super().__init__(*args, **kwargs)
class DeprecatedBufferDonationTestCase(BufferDonationTestCase):
def __init__(self, *args, **kwargs):
warnings.warn(textwrap.dedent("""\
jax.test_util.JaxTestCase is deprecated as of jax version 0.3.1:
The suggested replacement is to use parametrized.TestCase directly.
For tests that rely on custom asserts such as JaxTestCase.assertAllClose(),
the suggested replacement is to use standard numpy testing utilities such
as np.testing.assert_allclose(), which work directly with JAX arrays."""),
category=DeprecationWarning)
super().__init__(*args, **kwargs)