rocm_jax/tests/nn_test.py

229 lines
7.8 KiB
Python
Raw Normal View History

2019-09-21 10:11:53 -04:00
# Copyright 2019 Google LLC
2019-09-21 01:04:26 -04:00
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for nn module."""
2019-10-03 12:01:21 -07:00
import collections
import itertools
2019-09-21 01:04:26 -04:00
from absl.testing import absltest
from absl.testing import parameterized
import numpy as np
2019-09-21 01:04:26 -04:00
from jax import core
2019-09-21 01:04:26 -04:00
from jax import test_util as jtu
from jax.test_util import check_grads
from jax import nn
from jax import random
import jax
import jax.numpy as jnp
2019-09-21 01:04:26 -04:00
from jax.config import config
config.parse_flags_with_absl()
2019-10-03 12:01:21 -07:00
class NNFunctionsTest(jtu.JaxTestCase):
def setUp(self):
super().setUp()
config.update("jax_numpy_rank_promotion", "raise")
def tearDown(self):
super().tearDown()
config.update("jax_numpy_rank_promotion", "allow")
@jtu.skip_on_flag("jax_skip_slow_tests", True)
2019-09-21 01:04:26 -04:00
def testSoftplusGrad(self):
check_grads(nn.softplus, (1e-8,), order=4,
rtol=1e-2 if jtu.device_under_test() == "tpu" else None)
2019-10-03 12:01:21 -07:00
def testSoftplusGradZero(self):
check_grads(nn.softplus, (0.,), order=1,
rtol=1e-2 if jtu.device_under_test() == "tpu" else None)
def testSoftplusGradInf(self):
self.assertAllClose(
1., jax.grad(nn.softplus)(float('inf')))
def testSoftplusGradNegInf(self):
check_grads(nn.softplus, (-float('inf'),), order=1,
rtol=1e-2 if jtu.device_under_test() == "tpu" else None)
def testSoftplusGradNan(self):
check_grads(nn.softplus, (float('nan'),), order=1,
rtol=1e-2 if jtu.device_under_test() == "tpu" else None)
@parameterized.parameters([
int, jnp.int32, float, jnp.float64, jnp.float32, jnp.float64,])
def testSoftplusZero(self, dtype):
self.assertEqual(jnp.log(dtype(2)), nn.softplus(dtype(0)))
def testReluGrad(self):
rtol = 1e-2 if jtu.device_under_test() == "tpu" else None
check_grads(nn.relu, (1.,), order=3, rtol=rtol)
check_grads(nn.relu, (-1.,), order=3, rtol=rtol)
jaxpr = jax.make_jaxpr(jax.grad(nn.relu))(0.)
self.assertGreaterEqual(len(jaxpr.jaxpr.eqns), 2)
2019-09-21 01:04:26 -04:00
def testSoftplusValue(self):
val = nn.softplus(89.)
2019-09-27 12:11:18 -04:00
self.assertAllClose(val, 89., check_dtypes=False)
2019-10-03 12:01:21 -07:00
@jtu.skip_on_flag("jax_skip_slow_tests", True)
def testEluGrad(self):
check_grads(nn.elu, (1e4,), order=4, eps=1.)
def testEluValue(self):
val = nn.elu(1e4)
self.assertAllClose(val, 1e4, check_dtypes=False)
def testGluValue(self):
val = nn.glu(jnp.array([1.0, 0.0]))
self.assertAllClose(val, jnp.array([0.5]))
@parameterized.parameters(*itertools.product(
(jnp.float32, jnp.bfloat16, jnp.float16),
(nn.gelu, nn.relu, nn.softplus, nn.sigmoid)))
def testDtypeMatchesInput(self, dtype, fn):
if dtype is jnp.float16 and jtu.device_under_test() == "tpu":
self.skipTest("float16 not supported on TPU")
x = jnp.zeros((), dtype=dtype)
out = fn(x)
self.assertEqual(out.dtype, dtype)
@jtu.skip_on_devices("gpu", "tpu")
def testEluMemory(self):
# see https://github.com/google/jax/pull/1640
with core.skipping_checks(): # With checks we materialize the array
jax.make_jaxpr(nn.elu)(jnp.ones((10 ** 12,))) # don't oom
@jtu.skip_on_devices("gpu", "tpu")
def testHardTanhMemory(self):
# see https://github.com/google/jax/pull/1640
with core.skipping_checks(): # With checks we materialize the array
jax.make_jaxpr(nn.hard_tanh)(jnp.ones((10 ** 12,))) # don't oom
def testOneHot(self):
actual = nn.one_hot(jnp.array([0, 1, 2]), 3)
expected = jnp.array([[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]])
self.assertAllClose(actual, expected)
actual = nn.one_hot(jnp.array([1, 2, 0]), 3)
expected = jnp.array([[0., 1., 0.],
[0., 0., 1.],
[1., 0., 0.]])
self.assertAllClose(actual, expected)
def testOneHotOutOfBound(self):
actual = nn.one_hot(jnp.array([-1, 3]), 3)
expected = jnp.array([[0., 0., 0.],
[0., 0., 0.]])
self.assertAllClose(actual, expected)
def testOneHotNonArrayInput(self):
actual = nn.one_hot([0, 1, 2], 3)
expected = jnp.array([[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]])
self.assertAllClose(actual, expected)
def testOneHotCustomDtype(self):
actual = nn.one_hot(jnp.array([0, 1, 2]), 3, dtype=jnp.bool_)
expected = jnp.array([[True, False, False],
[False, True, False],
[False, False, True]])
self.assertAllClose(actual, expected)
def testOneHotConcretizationError(self):
# https://github.com/google/jax/issues/3654
2020-09-15 08:06:46 -07:00
msg = r"in jax.nn.one_hot argument `num_classes`"
with self.assertRaisesRegex(core.ConcretizationTypeError, msg):
jax.jit(nn.one_hot)(3, 5)
2019-10-03 12:01:21 -07:00
InitializerRecord = collections.namedtuple(
"InitializerRecord",
["name", "initializer", "shapes"])
ALL_SHAPES = [(2,), (2, 2), (2, 3), (3, 2), (2, 3, 4), (4, 3, 2), (2, 3, 4, 5)]
def initializer_record(name, initializer, min_dims=2, max_dims=4):
shapes = [shape for shape in ALL_SHAPES
if min_dims <= len(shape) <= max_dims]
return InitializerRecord(name, initializer, shapes)
INITIALIZER_RECS = [
initializer_record("uniform", nn.initializers.uniform, 1),
initializer_record("normal", nn.initializers.normal, 1),
initializer_record("he_normal", nn.initializers.he_normal),
initializer_record("he_uniform", nn.initializers.he_uniform),
initializer_record("glorot_normal", nn.initializers.glorot_normal),
initializer_record("glorot_uniform", nn.initializers.glorot_uniform),
initializer_record("lecun_normal", nn.initializers.lecun_normal),
initializer_record("lecun_uniform", nn.initializers.lecun_uniform),
initializer_record("orthogonal", nn.initializers.orthogonal, 2, 2),
initializer_record("delta_orthogonal", nn.initializers.delta_orthogonal, 4, 4)
2019-10-03 12:01:21 -07:00
]
class NNInitializersTest(jtu.JaxTestCase):
def setUp(self):
super().setUp()
config.update("jax_numpy_rank_promotion", "raise")
def tearDown(self):
super().tearDown()
config.update("jax_numpy_rank_promotion", "allow")
2019-10-03 12:01:21 -07:00
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name":
"_{}_{}".format(
rec.name,
jtu.format_shape_dtype_string(shape, dtype)),
"initializer": rec.initializer(),
2019-10-03 12:01:21 -07:00
"shape": shape, "dtype": dtype}
for rec in INITIALIZER_RECS
for shape in rec.shapes
for dtype in [np.float32, np.float64]))
def testInitializer(self, initializer, shape, dtype):
rng = random.PRNGKey(0)
val = initializer(rng, shape, dtype)
self.assertEqual(shape, jnp.shape(val))
self.assertEqual(jax.dtypes.canonicalize_dtype(dtype), jnp.dtype(val))
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name":
"_{}_{}".format(
rec.name,
jtu.format_shape_dtype_string(shape, dtype)),
"initializer_provider": rec.initializer,
"shape": shape, "dtype": dtype}
for rec in INITIALIZER_RECS
for shape in rec.shapes
for dtype in [np.float32, np.float64]))
def testInitializerProvider(self, initializer_provider, shape, dtype):
rng = random.PRNGKey(0)
initializer = initializer_provider(dtype=dtype)
val = initializer(rng, shape)
self.assertEqual(shape, jnp.shape(val))
self.assertEqual(jax.dtypes.canonicalize_dtype(dtype), jnp.dtype(val))
if __name__ == "__main__":
absltest.main(testLoader=jtu.JaxTestLoader())