mirror of
https://github.com/ROCm/jax.git
synced 2025-04-19 05:16:06 +00:00
mention numpy & scipy convolve functions in gotchas doc. (#3214)
This commit is contained in:
parent
336a0d6ea4
commit
41292a2af6
@ -1,32 +1,4 @@
|
||||
{
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 0,
|
||||
"metadata": {
|
||||
"accelerator": "GPU",
|
||||
"colab": {
|
||||
"name": "Common Gotchas in JAX",
|
||||
"provenance": [],
|
||||
"collapsed_sections": [],
|
||||
"toc_visible": true
|
||||
},
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.7.3"
|
||||
}
|
||||
},
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
@ -618,11 +590,11 @@
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Note that due to this behavior np.nanargmin and np.nanargmax return -1 for slices consisting of NaNs whereas Numpy would throw an error."
|
||||
]
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"Note that due to this behavior np.nanargmin and np.nanargmax return -1 for slices consisting of NaNs whereas Numpy would throw an error."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
@ -1627,7 +1599,9 @@
|
||||
"id": "0pcn2LeS-03b"
|
||||
},
|
||||
"source": [
|
||||
"JAX and XLA offer the very general N-dimensional __conv_general_dilated__ function, but it's not very obvious how to use it. We'll give some examples of the common use-cases. There are also the convenience functions `lax.conv` and `lax.conv_general_padding` for the most common kinds of convolutions.\n",
|
||||
"JAX and XLA offer the very general N-dimensional __conv_general_dilated__ function, but it's not very obvious how to use it. We'll give some examples of the common use-cases.\n",
|
||||
"\n",
|
||||
"For the most common kinds of convolutions, see also the convenience functions lax.conv and lax.conv_general_padding, as well as jax.numpy.convolve and jax.scipy.signal.convolve/jax.scipy.signal.convolve2d for an interface similar to that of the numpy and scipy packages.\n",
|
||||
"\n",
|
||||
"A survey of the family of convolutional operators, [a guide to convolutional arithmetic](https://arxiv.org/abs/1603.07285) is highly recommended reading!\n",
|
||||
"\n",
|
||||
@ -2625,5 +2599,33 @@
|
||||
"If something's not covered here that has caused you weeping and gnashing of teeth, please let us know and we'll extend these introductory _advisos_!"
|
||||
]
|
||||
}
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"accelerator": "GPU",
|
||||
"colab": {
|
||||
"name": "Common Gotchas in JAX",
|
||||
"provenance": [],
|
||||
"collapsed_sections": [],
|
||||
"toc_visible": true
|
||||
},
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.7.3"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 0
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user