Instructions to create custom operation for GPUs

This commit is contained in:
Sean Lee 2022-12-13 11:39:19 -08:00
parent c6eb632f57
commit 550eac45c6
8 changed files with 3211 additions and 0 deletions

View File

@ -61,6 +61,7 @@ parallelize, Just-In-Time compile to GPU/TPU, and more.
notebooks/Neural_Network_and_Data_Loading
notebooks/xmap_tutorial
notebooks/external_callbacks
notebooks/Custom_Operation_for_GPUs
.. toctree::

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,924 @@
---
jupytext:
formats: ipynb,md:myst
text_representation:
extension: .md
format_name: myst
format_version: 0.13
jupytext_version: 1.13.8
kernelspec:
display_name: Python 3 (ipykernel)
language: python
name: python3
---
# JAX custom operation for GPUs
JAX, a popular framework for machine learning, comes with a large number of operations, however, users occasionally run into a situation where they need a new operation that is not supported by JAX.
To accommodate such scenarios, JAX allows users to define custom operations and this tutorial is to explain how we can define one for GPUs and use it in single-GPU and multi-GPU environments.
This tutorial contains information from https://jax.readthedocs.io/en/latest/index.html and https://github.com/dfm/extending-jax.
+++
# RMS Normalization
For this tutorial, we are going to add the RMS normalization as a custom operation in JAX.
The CUDA code in `rms_norm_kernels.cu` for this operation has been borrowed from https://github.com/NVIDIA/apex/blob/master/csrc/layer_norm_cuda_kernel.cu and adapted to eliminate any dependency on PyTorch.
+++
`rms_norm_kernels.cu` defines the following functions, which are declared with the XLA custom function signature.
These functions are responsible for launching RMS normalization kernels with the given `buffers` on the specified `stream`.
```cpp
namespace gpu_ops {
void rms_forward_affine_mixed_dtypes(cudaStream_t stream, void **buffers,
const char *opaque,
std::size_t opaque_len);
void rms_backward_affine(cudaStream_t stream, void **buffers,
const char *opaque, std::size_t opaque_len);
} // namespace gpu_ops
```
* `stream` is the CUDA stream to be used to execute any kernel on the GPU.
* `buffers` has all pointers to input buffers followed by all pointers to output buffers.
* `opaque` is a buffer for any extra information that is being passed to the custom functions and `opaque_len` is the length of `opaque`.
For this tutorial, an `RMSNormDescriptor` object will be passed to these functions as `opaque`.
```cpp
namespace gpu_ops {
enum ElementType { BF16, F16, F32, F64 };
struct RMSNormDescriptor {
int n1;
int n2;
double eps;
ElementType x_type;
ElementType w_type;
int part_grad_size;
};
} // namespace gpu_ops
```
+++
Now, we need to expose these functions as well as `ElementType` and `RMSNormDescriptor` as a Python module, `gpu_ops`, through `pybind11`.
```cpp
pybind11::dict RMSNormRegistrations() {
pybind11::dict dict;
dict["rms_forward_affine_mixed_dtype"] =
gpu_ops::EncapsulateFunction(gpu_ops::rms_forward_affine_mixed_dtypes);
dict["rms_backward_affine"] =
gpu_ops::EncapsulateFunction(gpu_ops::rms_backward_affine);
return dict;
}
PYBIND11_MODULE(gpu_ops, m) {
m.def("rms_norm_registrations", &RMSNormRegistrations);
m.def("rms_norm_descriptor",
[](int n1, int n2, double eps, gpu_ops::ElementType x_type,
gpu_ops::ElementType w_type, int part_grad_size) {
return gpu_ops::PackDescriptor(gpu_ops::RMSNormDescriptor{
n1, n2, eps, x_type, w_type, part_grad_size});
});
pybind11::enum_<gpu_ops::ElementType>(m, "ElementType")
.value("BF16", gpu_ops::ElementType::BF16)
.value("F16", gpu_ops::ElementType::F16)
.value("F32", gpu_ops::ElementType::F32)
.value("F64", gpu_ops::ElementType::F64);
}
```
+++
# Build `gpu_ops` extension module
We build the `gpu_ops` Python extension module with the aforementioned code.
```{code-cell} ipython3
!python -m pip install pybind11==2.10.1
import pybind11
import sys
!mkdir -p build
!nvcc --threads 4 -Xcompiler -Wall -ldl --expt-relaxed-constexpr -O3 -DNDEBUG -Xcompiler -O3 --generate-code=arch=compute_70,code=[compute_70,sm_70] --generate-code=arch=compute_75,code=[compute_75,sm_75] --generate-code=arch=compute_80,code=[compute_80,sm_80] --generate-code=arch=compute_86,code=[compute_86,sm_86] -Xcompiler=-fPIC -Xcompiler=-fvisibility=hidden -x cu -c gpu_ops/rms_norm_kernels.cu -o build/rms_norm_kernels.cu.o
!c++ -I/usr/local/cuda/include -I{pybind11.get_include()} $({sys.executable}-config --cflags) -O3 -DNDEBUG -O3 -fPIC -fvisibility=hidden -flto -fno-fat-lto-objects -o build/gpu_ops.cpp.o -c gpu_ops/gpu_ops.cpp
!c++ -fPIC -O3 -DNDEBUG -O3 -flto -shared -o build/gpu_ops$({sys.executable}-config --extension-suffix) build/gpu_ops.cpp.o build/rms_norm_kernels.cu.o -L/usr/local/cuda/lib64 -lcudadevrt -lcudart_static -lrt -lpthread -ldl
!strip build/gpu_ops$({sys.executable}-config --extension-suffix)
!ls build
```
# Add RMS normalization to JAX as custom call
`gpu_ops` is just a Python extension module and we need more work to plug it into JAX.
+++
## Create primitive ops
We first create primitive operations, `_rms_norm_fwd_p` and `_rms_norm_bwd_p`, which the custom functions can be mapped to.
We set the `multipe_results` attribute to `True` for these operations, which means that the operation produces multipel outputs collected in an list.
When it is set to `False`, the operation produces a single output without a list.
```{code-cell} ipython3
%%capture
from functools import partial
from build import gpu_ops
from jax import core, dtypes
from jax.interpreters import xla
from jax.lib import xla_client
# Create _rms_norm_fwd_p for forward operation.
_rms_norm_fwd_p = core.Primitive("rms_norm_fwd")
_rms_norm_fwd_p.multiple_results = True
_rms_norm_fwd_p.def_impl(partial(xla.apply_primitive, _rms_norm_fwd_p))
def rms_norm_fwd(x, weight, eps=1e-05):
output, invvar = _rms_norm_fwd_p.bind(x, weight, eps=eps)
return output
# Create _rms_norm_bwd_p for backward operation.
_rms_norm_bwd_p = core.Primitive("rms_norm_bwd")
_rms_norm_bwd_p.multiple_results = True
_rms_norm_bwd_p.def_impl(partial(xla.apply_primitive, _rms_norm_bwd_p))
def rms_norm_bwd(g, invvar, x, weight, eps):
grad_input, grad_weight, part_grad = _rms_norm_bwd_p.bind(
g, invvar, x, weight, eps=eps
)
return grad_input, grad_weight
```
## Lowering to MLIR custom call
To map the custom functions to the new primitive operations, `_rms_norm_fwd_p` and `_rms_norm_bwd_p`, we need to:
* Register custom functions as custom call targets with `xla_client.register_custom_call_target`, and
* Register lowering functions that lower the primitive operations to MLIR custom calls with the registered custom call targets.
The functions `_rms_norm_fwd_cuda_lowering` and `_rms_norm_bwd_cuda_lowering` below lower the primitive operations to MLIR custom call operations with the custom targets from `gpu_ops`. These functions are registered with `jax.interpreters.mlir.register_lowering`.
Note that an `RMSNormDescriptor` object is created in the lowering function, and passed to the custom call as `opaque`.
```{code-cell} ipython3
from jax.interpreters import mlir
from jax.interpreters.mlir import ir
from jaxlib.mhlo_helpers import custom_call
# Register functions defined in gpu_ops as custom call target for GPUs
for _name, _value in gpu_ops.rms_norm_registrations().items():
xla_client.register_custom_call_target(_name, _value, platform="gpu")
def element_type_to_descriptor_type_mapping(element_type):
_element_type_to_descriptor_type_mapping = {
ir.BF16Type.get(): gpu_ops.ElementType.BF16,
ir.F16Type.get(): gpu_ops.ElementType.F16,
ir.F32Type.get(): gpu_ops.ElementType.F32,
ir.F64Type.get(): gpu_ops.ElementType.F64,
}
return _element_type_to_descriptor_type_mapping.get(element_type)
def default_layouts(*shapes):
return [range(len(shape) - 1, -1, -1) for shape in shapes]
def _rms_norm_fwd_cuda_lowering(ctx, x, weight, eps):
x_type = ir.RankedTensorType(x.type)
x_shape = x_type.shape
w_type = ir.RankedTensorType(weight.type)
w_shape = w_type.shape
iv_element_type = (
ir.F32Type.get()
if x_type.element_type in [ir.F16Type.get(), ir.BF16Type.get()]
else x_type.element_type
)
n2 = reduce(lambda x, y: x * y, w_shape)
n1 = reduce(lambda x, y: x * y, x_shape) // n2
opaque = gpu_ops.rms_norm_descriptor(
n1,
n2,
eps,
element_type_to_descriptor_type_mapping(x_type.element_type),
element_type_to_descriptor_type_mapping(w_type.element_type),
0, # unused
)
out = custom_call(
b"rms_forward_affine_mixed_dtype",
out_types=[
ir.RankedTensorType.get(x_shape, w_type.element_type),
ir.RankedTensorType.get((n1,), iv_element_type),
],
operands=[x, weight],
backend_config=opaque,
operand_layouts=default_layouts(x_shape, w_shape),
result_layouts=default_layouts(x_shape, (n1,)),
)
return out
mlir.register_lowering(
_rms_norm_fwd_p,
_rms_norm_fwd_cuda_lowering,
platform="gpu",
)
def _rms_norm_bwd_cuda_lowering(ctx, grad_output, invvar, x, weight, eps):
x_type = ir.RankedTensorType(x.type)
x_shape = x_type.shape
w_type = ir.RankedTensorType(weight.type)
w_shape = w_type.shape
iv_type = ir.RankedTensorType(invvar.type)
n2 = reduce(lambda x, y: x * y, w_shape)
n1 = reduce(lambda x, y: x * y, x_shape) // n2
part_grad_shape = ctx.avals_out[-1].shape
opaque = gpu_ops.rms_norm_descriptor(
n1,
n2,
eps,
element_type_to_descriptor_type_mapping(x_type.element_type),
element_type_to_descriptor_type_mapping(w_type.element_type),
part_grad_shape[0],
)
out = custom_call(
b"rms_backward_affine",
out_types=[
ir.RankedTensorType.get(x_shape, x_type.element_type),
ir.RankedTensorType.get(w_shape, w_type.element_type),
ir.RankedTensorType.get(part_grad_shape, iv_type.element_type),
],
operands=[grad_output, invvar, x, weight],
backend_config=opaque,
operand_layouts=default_layouts(x_shape, (n1,), x_shape, w_shape),
result_layouts=default_layouts(x_shape, w_shape, part_grad_shape),
)
return out
mlir.register_lowering(
_rms_norm_bwd_p,
_rms_norm_bwd_cuda_lowering,
platform="gpu",
)
```
# Let's test it
```{code-cell} ipython3
import jax
x = jax.random.normal(jax.random.PRNGKey(0), shape=(jax.local_device_count() * 4, 512, 512), dtype=jax.numpy.float16)
norm_shape = x.shape[-2:]
weight = jax.numpy.ones(norm_shape, dtype=jax.numpy.float16)
```
## Test forward function
```{code-cell} ipython3
:tags: [raises-exception]
out = rms_norm_fwd(x, weight)
```
# Abstract evaluation
The test above failed with `NotImplementedError: Abstract evaluation for 'rms_norm_fwd' not implemented`. Why did the test fail? What does it mean?
As part of the execution, JAX performs abstract evaluation. As JAX has no knowledge about the new primitive operations, it doesn't know how to compute the ouptut shapes and outut data types, thus can't evaluate these operations abstractly.
We need to provide a function for abstract evaluation of each primitive operation.
These abstract evaluation functions compute the shape and the data type of the outputs, but don't compute actual values for the operations.
These functions are passed to `.def_abstract_eval` method to be registered with the corresponding primitive operations.
See https://jax.readthedocs.io/en/latest/notebooks/How_JAX_primitives_work.html#abstract-evaluation-rules for more information on abstract evaluation.
```{code-cell} ipython3
%%capture
from functools import reduce
from operator import mul
import jax.numpy as jnp
from jax.abstract_arrays import ShapedArray
def _rms_norm_fwd_abstract(x, weight, eps):
w_dtype = dtypes.canonicalize_dtype(weight.dtype)
iv_dtype = dtypes.canonicalize_dtype(x.dtype)
if iv_dtype in [jnp.float16, jnp.bfloat16]:
iv_dtype = jnp.float32
n2 = reduce(mul, weight.shape)
n1 = reduce(mul, x.shape) // n2
return (
ShapedArray(x.shape, w_dtype, named_shape=x.named_shape), # output
ShapedArray((n1,), iv_dtype, named_shape=x.named_shape), # invvar
)
_rms_norm_fwd_p.def_abstract_eval(_rms_norm_fwd_abstract)
def _rms_norm_bwd_abstract(grad_output, invvar, x, weight, eps):
iv_dtype = dtypes.canonicalize_dtype(invvar.dtype)
w_dtype = dtypes.canonicalize_dtype(weight.dtype)
x_dtype = dtypes.canonicalize_dtype(x.dtype)
n2 = reduce(lambda x, y: x * y, weight.shape)
n1 = reduce(lambda x, y: x * y, x.shape) // n2
part_grad_shape = (16, n2)
assert dtypes.canonicalize_dtype(grad_output.dtype) == w_dtype
assert grad_output.shape == x.shape
assert invvar.shape == (n1,)
assert (
iv_dtype == jnp.float32 if x_dtype in [jnp.float16, jnp.bfloat16] else x_dtype
)
assert grad_output.named_shape == x.named_shape
weight_named_shape = (
weight_named_shape if weight.named_shape else x.named_shape
)
return (
ShapedArray(
x.shape, x_dtype, named_shape=x.named_shape
), # grad input
ShapedArray(
weight.shape, w_dtype, named_shape=weight_named_shape
), # grad weight
ShapedArray(
part_grad_shape, iv_dtype, named_shape=weight_named_shape
), # part grad
)
_rms_norm_bwd_p.def_abstract_eval(_rms_norm_bwd_abstract)
```
# Let's test it again
+++
## Test forward function
```{code-cell} ipython3
out = rms_norm_fwd(x, weight)
```
## Test backward function
Now let's test the backward operation using `jax.grad`.
```{code-cell} ipython3
:tags: [raises-exception]
def loss(x, weight):
predictions = rms_norm_fwd(x, weight)
return -jax.numpy.mean(predictions**2)
loss_grad = jax.grad(loss)
out = loss_grad(x, weight)
```
# Differentation rule
The backward operation failed with the error `NotImplementedError: Differentiation rule for 'rms_norm_fwd' not implemented`. It means that, although we have defined `rms_norm_fwd` and `rms_norm_bwd`, JAX doesn't know the relationship between them.
We can teach JAX that `rms_norm_bwd` is the backward operation for `rms_norm_fwd`, using `jax.custom_vjp` and its convention. As the first step, we need to refine the definition of `rms_norm_fwd` and `rms_norm_bwd`.
```{code-cell} ipython3
# rms_norm_fwd was previously defined as
#
# def rms_norm_fwd(x, weight, eps=1e-05):
# output, invvar = _rms_norm_fwd_p.bind(x, weight, eps=eps)
# return output
#
def rms_norm_fwd(x, weight, eps=1e-05):
output, invvar = _rms_norm_fwd_p.bind(x, weight, eps=eps)
return output, (invvar, x, weight)
# rms_norm_bwd was previously defined as
#
# def rms_norm_bwd(g, invvar, x, weight, eps):
# grad_input, grad_weight, part_grad = _rms_norm_bwd_p.bind(
# g, invvar, x, weight, eps=eps
# )
# return grad_input, grad_weight
#
def rms_norm_bwd(eps, res, g):
invvar, x, weight = res
grad_input, grad_weight, part_grad = _rms_norm_bwd_p.bind(
g, invvar, x, weight, eps=eps
)
return grad_input, grad_weight
```
`rms_norm_fwd` now returns an extra output `(invvar, x, weight)` for the residual data and `rms_norm_bwd` takes `eps`, `res`, and `g` as the parameters.
Once the relationship between `rms_norm_fwd` and `rms_norm_bwd` is estabilished through `jax.custom_vjp`, JAX will ensure that the residual data from `rms_norm_fwd` is passed to `rms_norm_bwd` as `res` for backward operation.
For non-differentiable parameters such as `eps`, JAX ensures that they are passed to the backward operation before the residual data. That's why `eps` precedes `res` in the parameter list of `rms_norm_bwd`.
Now that `rms_norm_fwd` returns the residual data, which is not needed for simple RMS normalization operation, we define a wrapper around it, `rms_norm`. It simply calls `rms_norm_fwd` and returns only `output`. Note that `rms_norm` is annotated with `@partial(jax.custom_vjp, nondiff_argnums=(2,))` and we are passing `rms_norm_fwd` and `rms_norm_bwd` to `rms_norm.defvjp`. It teaches JAX that, when `rms_norm` is differentiated, `rms_norm_fwd` is to be used for forward operation, and `rms_norm_bwd` is to be used for backward operation.
See https://jax.readthedocs.io/en/latest/notebooks/Custom_derivative_rules_for_Python_code.html#use-jax-custom-vjp-to-define-custom-reverse-mode-only-rules for more information on `jax.custom_vjp`.
```{code-cell} ipython3
@partial(jax.custom_vjp, nondiff_argnums=(2,))
def rms_norm(x, weight, eps=1e-05):
output, _ = rms_norm_fwd(x, weight, eps=eps)
return output
rms_norm.defvjp(rms_norm_fwd, rms_norm_bwd)
```
With the refinement we have made, the backward operation test works with a modification: `loss` now calls `rms_norm` instead of `rms_norm_fwd`.
```{code-cell} ipython3
def loss(x, weight):
predictions = rms_norm(x, weight)
return -jax.numpy.mean(predictions**2)
loss_grad = jax.grad(loss)
out = loss_grad(x, weight)
```
# Let's test it on multiple devices
We are using `jax.experimental.pjit.pjit` for parallel execution on multiple devices, and we produce reference values with sequential execution on a single device.
+++
## Test forward function
Let's first test the forward operation on multiple devices. We are creating a simple 1D mesh and sharding `x` on all devices.
```{code-cell} ipython3
import numpy
from jax.experimental.maps import Mesh
from jax.experimental.pjit import PartitionSpec, pjit
mesh = Mesh(numpy.array(jax.local_devices()).reshape(-1), ("a",))
ref = rms_norm(x, weight)
pjitted = pjit(
rms_norm,
in_axis_resources=(PartitionSpec("a", None, None), PartitionSpec(None, None)),
out_axis_resources=PartitionSpec("a", None, None),
)
with mesh:
print(pjitted.lower(x, weight).compile().runtime_executable().hlo_modules()[0].to_string())
out = pjitted(x, weight)
numpy.allclose(ref, out)
```
The values have been computed correctly for forward operation, however, the generated HLO modules shows an `all-gather` operation to replicate `x` on all devices, incurring large communication overhead.
As XLA does not have enough knowledge about the custom functions to shard input tensors, it decides to replicate them to produce correct values before making the custom call.
To avoid this overhead, we need to use the xmap manual sharding with the following configuration updates
```{code-cell} ipython3
jax.config.update("experimental_xmap_spmd_lowering", True)
jax.config.update("experimental_xmap_spmd_lowering_manual", True)
```
We need to modify the test code to use the xmap manual sharding with the custom operation.
We first define a function that wraps `rms_norm` with `xmap`. As the size of the data axis that is being sharded must match the size of the corresponding mesh axis in the xmap manual sharding mode, we reshape `x` with the new shape `(device_count, x.shape[0] // device_count, *x.shape[1:])`, and `device_count` represents the size of the corresponding mesh axis.
After running `rms_norm` through `xmap`, we reshape the output to match the shape of `x` to match the expectation from clients.
```{code-cell} ipython3
from jax.experimental.maps import xmap
def xmap_rms_norm(x, weight, *, device_count):
reshaped = x.reshape(device_count, x.shape[0] // device_count, *x.shape[1:])
xmap_axes = (("a", None, None, None), (None, None))
xmapped = xmap(
rms_norm,
in_axes=xmap_axes,
out_axes=xmap_axes[0],
axis_resources={"a": "a"},
)
reshaped_out = xmapped(reshaped, weight)
return reshaped_out.reshape(x.shape)
```
Now we need to run `xmap_rms_norm`, not `rms_norm` through `pjit`.
```{code-cell} ipython3
with mesh:
pjitted = pjit(
partial(xmap_rms_norm, device_count=jax.local_device_count()),
in_axis_resources=(
PartitionSpec("a", None, None),
PartitionSpec(None, None),
),
out_axis_resources=PartitionSpec("a", None, None),
)
print(pjitted.lower(x, weight).compile().runtime_executable().hlo_modules()[0].to_string())
out = pjitted(x, weight)
numpy.allclose(ref, out)
```
With this modification, the `all-gather` operation is eliminated and the custom call is made on each shard of `x`.
+++
## Test backward function
We are moving onto the the backward operation using `jax.grad` on multiple devices.
Similiarly to the forward operation test, we are creating a simple 1D mesh and sharding `x` on all devices.
We also define the `loss` function with `xmap_rms_norm` instead of `rms_norm`
```{code-cell} ipython3
def loss_ref(x, weight):
predictions = rms_norm(x, weight)
return -jax.numpy.mean(predictions**2)
ref = jax.grad(loss_ref, argnums=(0, 1))(x, weight)
# Re-define loss to use xmap_rms_norm instead of rms_norm
def loss(x, weight, *, device_count):
predictions = xmap_rms_norm(x, weight, device_count=device_count)
return -jax.numpy.mean(predictions**2)
with mesh:
pjitted = pjit(
jax.grad(partial(loss, device_count=jax.local_device_count()), argnums=(0, 1)),
in_axis_resources=(
PartitionSpec("a", None, None),
PartitionSpec(None, None),
),
out_axis_resources=(
PartitionSpec("a", None, None),
PartitionSpec(None, None),
),
)
out = pjitted(x, weight)
for r, o in zip(ref, out):
print(numpy.allclose(r, o))
```
We can inspect the generated jaxpr, which is the JAX internal representation, to make sure `jax.grad` inserts a `psum` for the gradient accumulation across the devices when needed.
```{code-cell} ipython3
with mesh:
print(jax.make_jaxpr(pjitted)(x, weight))
```
We see that `bm:f16[512,512] = psum[axes=('a',) axis_index_groups=None] bl` has been added after the call to `rms_norm_bwd` to reduce `grad_weight` across the devics on the axis `a`, but there is no `psum` for `grad_input`.
This is controlled by `named_shape` passed to the `ShapedArray` construction in abstract evaluation and the axes given to `xmap`.
The following code snippet from `_rms_norm_bwd_abstract` shows that `grad_input` has the exact same shape, type, and named shape as `x` does, which means `grad_input` is sharded the same way as `x`, hence no need for a `psum` for `grad_input`.
In contrast, `grad_weight` has the same shape and type as `weight` does, but, when `weight.named_shape` is empty, `x.named_shape` is used for `grad_weight`. In `in_axes` of our `xmap` call, `weight` has no named axis and `weight.named_shape` is empty, but `grad_weight` now has a named axis `"a"` in `grad_weight.named_shape`.
This makes `jax.grad` insert `psum` on the axis `"a"` for `grad_weight`.
```
weight_named_shape = (
weight_named_shape if weight.named_shape else x.named_shape
)
...
return (
ShapedArray(
x.shape, x_dtype, named_shape=x.named_shape
), # grad input
ShapedArray(
weight.shape, w_dtype, named_shape=weight_named_shape
), # grad weight
....
)
```
+++
# Let's put it together
Here is the complete code that is functional.
```{code-cell} ipython3
%reset -f
from functools import partial, reduce
from operator import mul
import jax
import jax.numpy as jnp
from build import gpu_ops
from jax import core, dtypes
from jax.abstract_arrays import ShapedArray
from jax.experimental.maps import Mesh, xmap
from jax.experimental.pjit import PartitionSpec, pjit
from jax.interpreters import mlir, xla
from jax.interpreters.mlir import ir
from jax.lib import xla_client
from jaxlib.mhlo_helpers import custom_call
# Create _rms_norm_fwd_p for forward operation.
_rms_norm_fwd_p = core.Primitive("rms_norm_fwd")
_rms_norm_fwd_p.multiple_results = True
_rms_norm_fwd_p.def_impl(partial(xla.apply_primitive, _rms_norm_fwd_p))
def rms_norm_fwd(x, weight, eps=1e-05):
output, invvar = _rms_norm_fwd_p.bind(x, weight, eps=eps)
return output, (invvar, x, weight)
# Create _rms_norm_bwd_p for backward operation.
_rms_norm_bwd_p = core.Primitive("rms_norm_bwd")
_rms_norm_bwd_p.multiple_results = True
_rms_norm_bwd_p.def_impl(partial(xla.apply_primitive, _rms_norm_bwd_p))
def rms_norm_bwd(eps, res, g):
invvar, x, weight = res
grad_input, grad_weight, part_grad = _rms_norm_bwd_p.bind(
g, invvar, x, weight, eps=eps
)
return grad_input, grad_weight
####################
# Lowering to MLIR #
####################
# Register functions defined in gpu_ops as custom call target for GPUs
for _name, _value in gpu_ops.rms_norm_registrations().items():
xla_client.register_custom_call_target(_name, _value, platform="gpu")
def element_type_to_descriptor_type_mapping(element_type):
_element_type_to_descriptor_type_mapping = {
ir.BF16Type.get(): gpu_ops.ElementType.BF16,
ir.F16Type.get(): gpu_ops.ElementType.F16,
ir.F32Type.get(): gpu_ops.ElementType.F32,
ir.F64Type.get(): gpu_ops.ElementType.F64,
}
return _element_type_to_descriptor_type_mapping.get(element_type)
def default_layouts(*shapes):
return [range(len(shape) - 1, -1, -1) for shape in shapes]
def _rms_norm_fwd_cuda_lowering(ctx, x, weight, eps):
x_type = ir.RankedTensorType(x.type)
x_shape = x_type.shape
w_type = ir.RankedTensorType(weight.type)
w_shape = w_type.shape
iv_element_type = (
ir.F32Type.get()
if x_type.element_type in [ir.F16Type.get(), ir.BF16Type.get()]
else x_type.element_type
)
n2 = reduce(lambda x, y: x * y, w_shape)
n1 = reduce(lambda x, y: x * y, x_shape) // n2
opaque = gpu_ops.rms_norm_descriptor(
n1,
n2,
eps,
element_type_to_descriptor_type_mapping(x_type.element_type),
element_type_to_descriptor_type_mapping(w_type.element_type),
0, # unused
)
out = custom_call(
b"rms_forward_affine_mixed_dtype",
out_types=[
ir.RankedTensorType.get(x_shape, w_type.element_type),
ir.RankedTensorType.get((n1,), iv_element_type),
],
operands=[x, weight],
backend_config=opaque,
operand_layouts=default_layouts(x_shape, w_shape),
result_layouts=default_layouts(x_shape, (n1,)),
)
return out
mlir.register_lowering(
_rms_norm_fwd_p,
_rms_norm_fwd_cuda_lowering,
platform="gpu",
)
def _rms_norm_bwd_cuda_lowering(ctx, grad_output, invvar, x, weight, eps):
x_type = ir.RankedTensorType(x.type)
x_shape = x_type.shape
w_type = ir.RankedTensorType(weight.type)
w_shape = w_type.shape
iv_type = ir.RankedTensorType(invvar.type)
n2 = reduce(lambda x, y: x * y, w_shape)
n1 = reduce(lambda x, y: x * y, x_shape) // n2
part_grad_shape = ctx.avals_out[-1].shape
opaque = gpu_ops.rms_norm_descriptor(
n1,
n2,
eps,
element_type_to_descriptor_type_mapping(x_type.element_type),
element_type_to_descriptor_type_mapping(w_type.element_type),
part_grad_shape[0],
)
out = custom_call(
b"rms_backward_affine",
out_types=[
ir.RankedTensorType.get(x_shape, x_type.element_type),
ir.RankedTensorType.get(w_shape, w_type.element_type),
ir.RankedTensorType.get(part_grad_shape, iv_type.element_type),
],
operands=[grad_output, invvar, x, weight],
backend_config=opaque,
operand_layouts=default_layouts(x_shape, (n1,), x_shape, w_shape),
result_layouts=default_layouts(x_shape, w_shape, part_grad_shape),
)
return out
mlir.register_lowering(
_rms_norm_bwd_p,
_rms_norm_bwd_cuda_lowering,
platform="gpu",
)
#######################
# Abstract evaluation #
#######################
def _rms_norm_fwd_abstract(x, weight, eps):
w_dtype = dtypes.canonicalize_dtype(weight.dtype)
iv_dtype = dtypes.canonicalize_dtype(x.dtype)
if iv_dtype in [jnp.float16, jnp.bfloat16]:
iv_dtype = jnp.float32
n2 = reduce(mul, weight.shape)
n1 = reduce(mul, x.shape) // n2
return (
ShapedArray(x.shape, w_dtype, named_shape=x.named_shape), # output
ShapedArray((n1,), iv_dtype, named_shape=x.named_shape), # invvar
)
_rms_norm_fwd_p.def_abstract_eval(_rms_norm_fwd_abstract)
def _rms_norm_bwd_abstract(grad_output, invvar, x, weight, eps):
iv_dtype = dtypes.canonicalize_dtype(invvar.dtype)
w_dtype = dtypes.canonicalize_dtype(weight.dtype)
x_dtype = dtypes.canonicalize_dtype(x.dtype)
n2 = reduce(lambda x, y: x * y, weight.shape)
n1 = reduce(lambda x, y: x * y, x.shape) // n2
part_grad_shape = (16, n2)
assert dtypes.canonicalize_dtype(grad_output.dtype) == w_dtype
assert grad_output.shape == x.shape
assert invvar.shape == (n1,)
assert (
iv_dtype == jnp.float32 if x_dtype in [jnp.float16, jnp.bfloat16] else x_dtype
)
assert grad_output.named_shape == x.named_shape
weight_named_shape = (
weight_named_shape if weight.named_shape else grad_output.named_shape
)
return (
ShapedArray(
x.shape, x_dtype, named_shape=x.named_shape
), # grad input
ShapedArray(
weight.shape, w_dtype, named_shape=weight_named_shape
), # grad weight
ShapedArray(
part_grad_shape, iv_dtype, named_shape=weight_named_shape
), # part grad
)
_rms_norm_bwd_p.def_abstract_eval(_rms_norm_bwd_abstract)
#######################################
# Top-level interface with custom vjp #
#######################################
@partial(jax.custom_vjp, nondiff_argnums=(2,))
def rms_norm(x, weight, eps=1e-05):
output, _ = rms_norm_fwd(x, weight, eps=eps)
return output
rms_norm.defvjp(rms_norm_fwd, rms_norm_bwd)
######################
# RMS norm with xmap #
######################
jax.config.update("experimental_xmap_spmd_lowering", True)
jax.config.update("experimental_xmap_spmd_lowering_manual", True)
def xmap_rms_norm(x, weight, *, device_count):
reshaped = x.reshape(device_count, x.shape[0] // device_count, *x.shape[1:])
xmap_axes = (("a", None, None, None), (None, None))
xmapped = xmap(
rms_norm,
in_axes=xmap_axes,
out_axes=xmap_axes[0],
axis_resources={"a": "a"},
)
reshaped_out = xmapped(reshaped, weight)
return reshaped_out.reshape(x.shape)
########
# Test #
########
import jax
import numpy
x = jax.random.normal(jax.random.PRNGKey(0), shape=(jax.local_device_count() * 4, 512, 512), dtype=jax.numpy.float16)
norm_shape = x.shape[-2:]
weight = jax.numpy.ones(norm_shape, dtype=jax.numpy.float16)
def loss_ref(x, weight):
predictions = rms_norm(x, weight)
return -jax.numpy.mean(predictions**2)
ref = jax.grad(loss_ref, argnums=(0, 1))(x, weight)
def loss(x, weight, *, device_count):
predictions = xmap_rms_norm(x, weight, device_count=device_count)
return -jax.numpy.mean(predictions**2)
with Mesh(numpy.array(jax.local_devices()).reshape(-1), ("a",)):
pjitted = pjit(
jax.grad(partial(loss, device_count=jax.local_device_count()), argnums=(0, 1)),
in_axis_resources=(
PartitionSpec("a", None, None),
PartitionSpec(None, None),
),
out_axis_resources=(
PartitionSpec("a", None, None),
PartitionSpec(None, None),
),
)
out = pjitted(x, weight)
for r, o in zip(ref, out):
print(numpy.allclose(r, o))
```

View File

@ -0,0 +1,30 @@
#include "kernels.h"
#include "pybind11_kernel_helpers.h"
namespace {
pybind11::dict RMSNormRegistrations() {
pybind11::dict dict;
dict["rms_forward_affine_mixed_dtype"] =
gpu_ops::EncapsulateFunction(gpu_ops::rms_forward_affine_mixed_dtypes);
dict["rms_backward_affine"] =
gpu_ops::EncapsulateFunction(gpu_ops::rms_backward_affine);
return dict;
}
PYBIND11_MODULE(gpu_ops, m) {
m.def("rms_norm_registrations", &RMSNormRegistrations);
m.def("rms_norm_descriptor",
[](int n1, int n2, double eps, gpu_ops::ElementType x_type,
gpu_ops::ElementType w_type, int part_grad_size) {
return gpu_ops::PackDescriptor(gpu_ops::RMSNormDescriptor{
n1, n2, eps, x_type, w_type, part_grad_size});
});
pybind11::enum_<gpu_ops::ElementType>(m, "ElementType")
.value("BF16", gpu_ops::ElementType::BF16)
.value("F16", gpu_ops::ElementType::F16)
.value("F32", gpu_ops::ElementType::F32)
.value("F64", gpu_ops::ElementType::F64);
}
} // namespace

View File

@ -0,0 +1,49 @@
// This header is not specific to our application and you'll probably want
// something like this for any extension you're building. This includes the
// infrastructure needed to serialize descriptors that are used with the
// "opaque" parameter of the GPU custom call. In our example we'll use this
// parameter to pass the size of our problem.
#ifndef _GPU_OPS_KERNEL_HELPERS_H_
#define _GPU_OPS_KERNEL_HELPERS_H_
#include <cstdint>
#include <stdexcept>
#include <string>
#include <type_traits>
#define JAX_APEX_WARP_SIZE 32
namespace gpu_ops {
// https://en.cppreference.com/w/cpp/numeric/bit_cast
template <class To, class From>
typename std::enable_if<sizeof(To) == sizeof(From) &&
std::is_trivially_copyable<From>::value &&
std::is_trivially_copyable<To>::value,
To>::type
bit_cast(const From &src) noexcept {
static_assert(std::is_trivially_constructible<To>::value,
"This implementation additionally requires destination type to "
"be trivially constructible");
To dst;
memcpy(&dst, &src, sizeof(To));
return dst;
}
template <typename T> std::string PackDescriptorAsString(const T &descriptor) {
return std::string(bit_cast<const char *>(&descriptor), sizeof(T));
}
template <typename T>
const T *UnpackDescriptor(const char *opaque, std::size_t opaque_len) {
if (opaque_len != sizeof(T)) {
throw std::runtime_error("Invalid opaque object size");
}
return bit_cast<const T *>(opaque);
}
} // namespace gpu_ops
#endif

View File

@ -0,0 +1,29 @@
#ifndef _GPU_OPS_KERNELS_H_
#define _GPU_OPS_KERNELS_H_
#include <cuda_runtime_api.h>
#include <cstddef>
#include <cstdint>
namespace gpu_ops {
enum ElementType { BF16, F16, F32, F64 };
struct RMSNormDescriptor {
int n1;
int n2;
double eps;
ElementType x_type;
ElementType w_type;
int part_grad_size;
};
void rms_forward_affine_mixed_dtypes(cudaStream_t stream, void **buffers,
const char *opaque,
std::size_t opaque_len);
void rms_backward_affine(cudaStream_t stream, void **buffers,
const char *opaque, std::size_t opaque_len);
} // namespace gpu_ops
#endif

View File

@ -0,0 +1,26 @@
// This header extends kernel_helpers.h with the pybind11 specific interface to
// serializing descriptors. It also adds a pybind11 function for wrapping our
// custom calls in a Python capsule. This is separate from kernel_helpers so
// that the CUDA code itself doesn't include pybind11. I don't think that this
// is strictly necessary, but they do it in jaxlib, so let's do it here too.
#ifndef _GPU_OPS_PYBIND11_KERNEL_HELPERS_H_
#define _GPU_OPS_PYBIND11_KERNEL_HELPERS_H_
#include <pybind11/pybind11.h>
#include "kernel_helpers.h"
namespace gpu_ops {
template <typename T> pybind11::bytes PackDescriptor(const T &descriptor) {
return pybind11::bytes(PackDescriptorAsString(descriptor));
}
template <typename T> pybind11::capsule EncapsulateFunction(T *fn) {
return pybind11::capsule(bit_cast<void *>(fn), "xla._CUSTOM_CALL_TARGET");
}
} // namespace gpu_ops
#endif

View File

@ -0,0 +1,955 @@
#include "kernel_helpers.h"
#include "kernels.h"
#include "stdio.h"
#include <cuda_bf16.h>
#include <cuda_fp16.h>
#include <iostream>
namespace {
#define DISPATCH_DOUBLE_FLOAT_HALF_AND_BFLOAT_INOUT_TYPES(TYPEIN, TYPEOUT, \
NAME, ...) \
switch (TYPEIN) { \
case gpu_ops::ElementType::F64: { \
using scalar_t_in = double; \
using accscalar_t = double; \
switch (TYPEOUT) { \
case gpu_ops::ElementType::F64: { \
using scalar_t_out = double; \
__VA_ARGS__; \
break; \
} \
case gpu_ops::ElementType::F32: { \
using scalar_t_out = float; \
__VA_ARGS__; \
break; \
} \
case gpu_ops::ElementType::F16: { \
using scalar_t_out = __half; \
__VA_ARGS__; \
break; \
} \
case gpu_ops::ElementType::BF16: { \
using scalar_t_out = __nv_bfloat16; \
__VA_ARGS__; \
break; \
} \
default: \
break; \
} \
break; \
} \
case gpu_ops::ElementType::F32: { \
using scalar_t_in = float; \
using accscalar_t = float; \
switch (TYPEOUT) { \
case gpu_ops::ElementType::F64: { \
using scalar_t_out = double; \
__VA_ARGS__; \
break; \
} \
case gpu_ops::ElementType::F32: { \
using scalar_t_out = float; \
__VA_ARGS__; \
break; \
} \
case gpu_ops::ElementType::F16: { \
using scalar_t_out = __half; \
__VA_ARGS__; \
break; \
} \
case gpu_ops::ElementType::BF16: { \
using scalar_t_out = __nv_bfloat16; \
__VA_ARGS__; \
break; \
} \
default: \
break; \
} \
break; \
} \
case gpu_ops::ElementType::F16: { \
using scalar_t_in = __half; \
using accscalar_t = float; \
switch (TYPEOUT) { \
case gpu_ops::ElementType::F64: { \
using scalar_t_out = double; \
__VA_ARGS__; \
break; \
} \
case gpu_ops::ElementType::F32: { \
using scalar_t_out = float; \
__VA_ARGS__; \
break; \
} \
case gpu_ops::ElementType::F16: { \
using scalar_t_out = __half; \
__VA_ARGS__; \
break; \
} \
case gpu_ops::ElementType::BF16: { \
using scalar_t_out = __nv_bfloat16; \
__VA_ARGS__; \
break; \
} \
default: \
break; \
} \
break; \
} \
case gpu_ops::ElementType::BF16: { \
using scalar_t_in = __nv_bfloat16; \
using accscalar_t = float; \
switch (TYPEOUT) { \
case gpu_ops::ElementType::F64: { \
using scalar_t_out = double; \
__VA_ARGS__; \
break; \
} \
case gpu_ops::ElementType::F32: { \
using scalar_t_out = float; \
__VA_ARGS__; \
break; \
} \
case gpu_ops::ElementType::F16: { \
using scalar_t_out = __half; \
__VA_ARGS__; \
break; \
} \
case gpu_ops::ElementType::BF16: { \
using scalar_t_out = __nv_bfloat16; \
__VA_ARGS__; \
break; \
} \
default: \
break; \
} \
break; \
} \
default: \
break; \
}
template <typename U>
__device__ void cuWelfordOnlineSum(const U curr, U &mu, U &sigma2, U &count) {
count = count + U(1);
U delta = curr - mu;
U lmean = mu + delta / count;
mu = lmean;
U delta2 = curr - lmean;
sigma2 = sigma2 + delta * delta2;
}
template <typename U>
__device__ void cuChanOnlineSum(const U muB, const U sigma2B, const U countB,
U &mu, U &sigma2, U &count) {
U delta = muB - mu;
U nA = count;
U nB = countB;
count = count + countB;
U nX = count;
if (nX > U(0)) {
nA = nA / nX;
nB = nB / nX;
mu = nA * mu + nB * muB;
sigma2 = sigma2 + sigma2B + delta * delta * nA * nB * nX;
} else {
mu = U(0);
sigma2 = U(0);
}
}
template <typename U> __device__ void cuRMSOnlineSum(const U curr, U &sigma2) {
sigma2 = sigma2 + curr * curr;
}
template <typename U>
__device__ void cuChanRMSOnlineSum(const U sigma2B, U &sigma2) {
sigma2 = sigma2 + sigma2B;
}
template <typename T, typename U>
__device__ void cuWelfordMuSigma2(const T *__restrict__ vals, const int n1,
const int n2, const int i1, U &mu, U &sigma2,
U *buf, bool rms_only) {
// Assumptions:
// 1) blockDim.x == warpSize
// 2) Tensor is contiguous
// 3) 2*blockDim.y*sizeof(U)+blockDim.y*sizeof(int) shared memory available.
//
// compute variance and mean over n2
U count = U(0);
mu = U(0);
sigma2 = U(0);
if (i1 < n1) {
// one warp normalizes one n1 index,
// synchronization is implicit
// initialize with standard Welford algorithm
const int numx = blockDim.x * blockDim.y;
const int thrx = threadIdx.x + threadIdx.y * blockDim.x;
const T *lvals = vals + i1 * n2;
int l = 4 * thrx;
for (; l + 3 < n2; l += 4 * numx) {
for (int k = 0; k < 4; ++k) {
U curr = static_cast<U>(lvals[l + k]);
if (!rms_only) {
cuWelfordOnlineSum<U>(curr, mu, sigma2, count);
} else {
cuRMSOnlineSum<U>(curr, sigma2);
}
}
}
for (; l < n2; ++l) {
U curr = static_cast<U>(lvals[l]);
if (!rms_only) {
cuWelfordOnlineSum<U>(curr, mu, sigma2, count);
} else {
cuRMSOnlineSum<U>(curr, sigma2);
}
}
// intra-warp reductions
for (int l = 0; l <= 4; ++l) {
int srcLaneB = (threadIdx.x + (1 << l)) & 31;
U sigma2B = __shfl_sync(0xffffffff, sigma2, srcLaneB, warpSize);
if (!rms_only) {
U muB = __shfl_sync(0xffffffff, mu, srcLaneB, warpSize);
U countB = __shfl_sync(0xffffffff, count, srcLaneB, warpSize);
cuChanOnlineSum<U>(muB, sigma2B, countB, mu, sigma2, count);
} else {
cuChanRMSOnlineSum<U>(sigma2B, sigma2);
}
}
// threadIdx.x == 0 has correct values for each warp
// inter-warp reductions
if (blockDim.y > 1) {
U *ubuf = (U *)buf;
U *ibuf = (U *)(ubuf + blockDim.y);
for (int offset = blockDim.y / 2; offset > 0; offset /= 2) {
// upper half of warps write to shared
if (threadIdx.x == 0 && threadIdx.y >= offset &&
threadIdx.y < 2 * offset) {
const int wrt_y = threadIdx.y - offset;
if (!rms_only) {
ubuf[2 * wrt_y] = mu;
ibuf[wrt_y] = count;
}
ubuf[2 * wrt_y + 1] = sigma2;
}
__syncthreads();
// lower half merges
if (threadIdx.x == 0 && threadIdx.y < offset) {
U sigma2B = ubuf[2 * threadIdx.y + 1];
if (!rms_only) {
U muB = ubuf[2 * threadIdx.y];
U countB = ibuf[threadIdx.y];
cuChanOnlineSum<U>(muB, sigma2B, countB, mu, sigma2, count);
} else {
cuChanRMSOnlineSum<U>(sigma2B, sigma2);
}
}
__syncthreads();
}
// threadIdx.x = 0 && threadIdx.y == 0 only thread that has correct values
if (threadIdx.x == 0 && threadIdx.y == 0) {
if (!rms_only) {
ubuf[0] = mu;
}
ubuf[1] = sigma2;
}
__syncthreads();
if (!rms_only) {
mu = ubuf[0];
}
sigma2 = ubuf[1] / U(n2);
// don't care about final value of count, we know count == n2
} else {
if (!rms_only) {
mu = __shfl_sync(0xffffffff, mu, 0, warpSize);
}
sigma2 = __shfl_sync(0xffffffff, sigma2 / U(n2), 0, warpSize);
}
}
}
template <>
__device__ void cuWelfordMuSigma2(const __half *__restrict__ vals, const int n1,
const int n2, const int i1, float &mu,
float &sigma2, float *buf, bool rms_only) {
// Assumptions:
// 1) blockDim.x == warpSize
// 2) Tensor is contiguous
// 3) 2*blockDim.y*sizeof(U)+blockDim.y*sizeof(int) shared memory available.
//
// compute variance and mean over n2
float count = 0.0f;
mu = float(0);
sigma2 = float(0);
if (i1 < n1) {
// one warp normalizes one n1 index,
// synchronization is implicit
// initialize with standard Welford algorithm
const int numx = blockDim.x * blockDim.y;
const int thrx = threadIdx.x + threadIdx.y * blockDim.x;
const __half *lvals = vals + i1 * n2;
int l = 8 * thrx;
if ((((size_t)lvals) & 3) != 0) {
// 16 bit alignment
// first thread consumes first point
if (thrx == 0) {
float curr = static_cast<float>(lvals[0]);
if (!rms_only) {
cuWelfordOnlineSum(curr, mu, sigma2, count);
} else {
cuRMSOnlineSum(curr, sigma2);
}
}
++l;
}
// at this point, lvals[l] are 32 bit aligned for all threads.
for (; l + 7 < n2; l += 8 * numx) {
for (int k = 0; k < 8; k += 2) {
float2 curr = __half22float2(*((__half2 *)(lvals + l + k)));
if (!rms_only) {
cuWelfordOnlineSum(curr.x, mu, sigma2, count);
cuWelfordOnlineSum(curr.y, mu, sigma2, count);
} else {
cuRMSOnlineSum(curr.x, sigma2);
cuRMSOnlineSum(curr.y, sigma2);
}
}
}
for (; l < n2; ++l) {
float curr = static_cast<float>(lvals[l]);
if (!rms_only) {
cuWelfordOnlineSum(curr, mu, sigma2, count);
} else {
cuRMSOnlineSum(curr, sigma2);
}
}
// intra-warp reductions
for (int l = 0; l <= 4; ++l) {
int srcLaneB = (threadIdx.x + (1 << l)) & 31;
float sigma2B = __shfl_sync(0xffffffff, sigma2, srcLaneB, warpSize);
if (!rms_only) {
float muB = __shfl_sync(0xffffffff, mu, srcLaneB, warpSize);
float countB = __shfl_sync(0xffffffff, count, srcLaneB, warpSize);
cuChanOnlineSum(muB, sigma2B, countB, mu, sigma2, count);
} else {
cuChanRMSOnlineSum(sigma2B, sigma2);
}
}
// threadIdx.x == 0 has correct values for each warp
// inter-warp reductions
if (blockDim.y > 1) {
float *ubuf = (float *)buf;
float *ibuf = (float *)(ubuf + blockDim.y);
for (int offset = blockDim.y / 2; offset > 0; offset /= 2) {
// upper half of warps write to shared
if (threadIdx.x == 0 && threadIdx.y >= offset &&
threadIdx.y < 2 * offset) {
const int wrt_y = threadIdx.y - offset;
ubuf[2 * wrt_y + 1] = sigma2;
if (!rms_only) {
ubuf[2 * wrt_y] = mu;
ibuf[wrt_y] = count;
}
}
__syncthreads();
// lower half merges
if (threadIdx.x == 0 && threadIdx.y < offset) {
float sigma2B = ubuf[2 * threadIdx.y + 1];
if (!rms_only) {
float muB = ubuf[2 * threadIdx.y];
float countB = ibuf[threadIdx.y];
cuChanOnlineSum(muB, sigma2B, countB, mu, sigma2, count);
} else {
cuChanRMSOnlineSum(sigma2B, sigma2);
}
}
__syncthreads();
}
// threadIdx.x = 0 && threadIdx.y == 0 only thread that has correct values
if (threadIdx.x == 0 && threadIdx.y == 0) {
if (!rms_only) {
ubuf[0] = mu;
}
ubuf[1] = sigma2;
}
__syncthreads();
if (!rms_only) {
mu = ubuf[0];
}
sigma2 = ubuf[1] / float(n2);
// don't care about final value of count, we know count == n2
} else {
if (!rms_only) {
mu = __shfl_sync(0xffffffff, mu, 0, warpSize);
}
sigma2 = __shfl_sync(0xffffffff, sigma2 / float(n2), 0, warpSize);
}
}
}
// This is the un-specialized struct. Note that we prevent instantiation of
// this struct by putting an undefined symbol in the function body so it won't
// compile.
// template <typename T>
// struct SharedMemory
// {
// // Ensure that we won't compile any un-specialized types
// __device__ T *getPointer()
// {
// extern __device__ void error(void);
// error();
// return NULL;
// }
// };
// https://github.com/NVIDIA/apex/issues/246
template <typename T> struct SharedMemory;
template <> struct SharedMemory<float> {
__device__ float *getPointer() {
extern __shared__ float s_float[];
return s_float;
}
};
template <> struct SharedMemory<double> {
__device__ double *getPointer() {
extern __shared__ double s_double[];
return s_double;
}
};
template <typename T, typename U, typename V>
__device__ void cuApplyLayerNorm_(V *__restrict__ output_vals,
U *__restrict__ mean, U *__restrict__ invvar,
const T *__restrict__ vals, const int n1,
const int n2, const U epsilon,
const V *__restrict__ gamma,
const V *__restrict__ beta, bool rms_only) {
// Assumptions:
// 1) blockDim.x == warpSize
// 2) Tensors are contiguous
//
for (auto i1 = blockIdx.y; i1 < n1; i1 += gridDim.y) {
SharedMemory<U> shared;
U *buf = shared.getPointer();
U mu, sigma2;
cuWelfordMuSigma2(vals, n1, n2, i1, mu, sigma2, buf, rms_only);
const T *lvals = vals + i1 * n2;
V *ovals = output_vals + i1 * n2;
U c_invvar = rsqrt(sigma2 + epsilon);
const int numx = blockDim.x * blockDim.y;
const int thrx = threadIdx.x + threadIdx.y * blockDim.x;
if (gamma != NULL && (beta != NULL || rms_only)) {
for (int i = thrx; i < n2; i += numx) {
U curr = static_cast<U>(lvals[i]);
if (!rms_only) {
ovals[i] =
gamma[i] * static_cast<V>(c_invvar * (curr - mu)) + beta[i];
} else {
ovals[i] = gamma[i] * static_cast<V>(c_invvar * curr);
}
}
} else {
for (int i = thrx; i < n2; i += numx) {
U curr = static_cast<U>(lvals[i]);
if (!rms_only) {
ovals[i] = static_cast<V>(c_invvar * (curr - mu));
} else {
ovals[i] = static_cast<V>(c_invvar * curr);
}
}
}
if (threadIdx.x == 0 && threadIdx.y == 0) {
if (!rms_only) {
mean[i1] = mu;
}
invvar[i1] = c_invvar;
}
__syncthreads();
}
}
template <typename T, typename U, typename V = T>
__global__ void
cuApplyRMSNorm(V *__restrict__ output_vals, U *__restrict__ invvar,
const T *__restrict__ vals, const int n1, const int n2,
const U epsilon, const V *__restrict__ gamma) {
cuApplyLayerNorm_<T, U, V>(output_vals, NULL, invvar, vals, n1, n2, epsilon,
gamma, NULL, true);
}
template <typename T, typename U, typename V = T>
void HostApplyRMSNorm(cudaStream_t stream, V *output, U *invvar, const T *input,
int n1, int n2, double epsilon, const V *gamma) {
auto getMaxGridY = []() {
int device;
int val;
cudaGetDevice(&device);
cudaDeviceGetAttribute(&val, cudaDevAttrMaxGridDimY, device);
return val;
};
const dim3 threads(32, 4, 1);
const uint64_t maxGridY = getMaxGridY();
const dim3 blocks(1, std::min((uint64_t)n1, maxGridY), 1);
int nshared =
threads.y > 1 ? threads.y * sizeof(U) + (threads.y / 2) * sizeof(U) : 0;
cuApplyRMSNorm<<<blocks, threads, nshared, stream>>>(
output, invvar, input, n1, n2, U(epsilon), gamma);
}
template <typename T, typename U, typename V>
__device__ void cuLoadWriteStridedInputs(
const int i1_block, const int thr_load_row_off, const int thr_load_col_off,
const int i2_off, const int row_stride, U *warp_buf1, U *warp_buf2,
const T *input, const V *dout, const int i1_end, const int n2,
const U *__restrict__ mean, const U *__restrict__ invvar, bool rms_only) {
int i1 = i1_block + thr_load_row_off;
if (i1 < i1_end) {
U curr_mean;
if (!rms_only) {
curr_mean = mean[i1];
}
U curr_invvar = invvar[i1];
for (int k = 0; k < blockDim.y; ++k) {
int i2 = i2_off + k;
int load_idx = i1 * n2 + i2;
int write_idx = thr_load_row_off * row_stride + thr_load_col_off + k;
if (i2 < n2) {
U curr_input = static_cast<U>(input[load_idx]);
U curr_dout = static_cast<U>(dout[load_idx]);
if (!rms_only) {
warp_buf1[write_idx] = curr_dout;
warp_buf2[write_idx] =
curr_dout * (curr_input - curr_mean) * curr_invvar;
} else {
warp_buf2[write_idx] = curr_dout * (curr_input)*curr_invvar;
}
} else {
if (!rms_only) {
warp_buf1[write_idx] = U(0);
}
warp_buf2[write_idx] = U(0);
}
}
} else {
for (int k = 0; k < blockDim.y; ++k) {
int write_idx = thr_load_row_off * row_stride + thr_load_col_off + k;
if (!rms_only) {
warp_buf1[write_idx] = U(0);
}
warp_buf2[write_idx] = U(0);
}
}
}
template <typename T, typename U, typename V>
__device__ void cuLoadAddStridedInputs(
const int i1_block, const int thr_load_row_off, const int thr_load_col_off,
const int i2_off, const int row_stride, U *warp_buf1, U *warp_buf2,
const T *input, const V *dout, const int i1_end, const int n2,
const U *__restrict__ mean, const U *__restrict__ invvar, bool rms_only) {
int i1 = i1_block + thr_load_row_off;
if (i1 < i1_end) {
U curr_mean;
if (!rms_only) {
curr_mean = mean[i1];
}
U curr_invvar = invvar[i1];
for (int k = 0; k < blockDim.y; ++k) {
int i2 = i2_off + k;
int load_idx = i1 * n2 + i2;
int write_idx = thr_load_row_off * row_stride + thr_load_col_off + k;
if (i2 < n2) {
U curr_input = static_cast<U>(input[load_idx]);
U curr_dout = static_cast<U>(dout[load_idx]);
if (!rms_only) {
warp_buf1[write_idx] += curr_dout;
warp_buf2[write_idx] +=
curr_dout * (curr_input - curr_mean) * curr_invvar;
} else {
warp_buf2[write_idx] += curr_dout * (curr_input)*curr_invvar;
}
}
}
}
}
template <typename T, typename U, typename V>
__global__ void cuComputePartGradGammaBeta(
const V *__restrict__ dout, const T *__restrict__ input, const int n1,
const int n2, const U *__restrict__ mean, const U *__restrict__ invvar,
U epsilon, U *part_grad_gamma, U *part_grad_beta, bool rms_only) {
const int numsegs_n1 =
(n1 + blockDim.y * blockDim.y - 1) / (blockDim.y * blockDim.y);
const int segs_per_block = (numsegs_n1 + gridDim.y - 1) / gridDim.y;
const int i1_beg = blockIdx.y * segs_per_block * blockDim.y * blockDim.y;
const int i1_beg_plus_one =
(blockIdx.y + 1) * segs_per_block * blockDim.y * blockDim.y;
const int i1_end = i1_beg_plus_one < n1 ? i1_beg_plus_one : n1;
const int row_stride = blockDim.x + 1;
const int thr_load_col_off = (threadIdx.x * blockDim.y) & (blockDim.x - 1);
const int thr_load_row_off =
(threadIdx.x * blockDim.y) / blockDim.x + threadIdx.y * blockDim.y;
const int i2_off = blockIdx.x * blockDim.x + thr_load_col_off;
SharedMemory<U> shared;
U *buf = shared.getPointer(); // buf has at least blockDim.x * blockDim.y *
// blockDim.y + (blockDim.y -
// 1)*(blockDim.x/blockDim.y) elements
U *warp_buf1 = (U *)buf;
U *warp_buf2 = warp_buf1 + blockDim.y * blockDim.y * row_stride;
// compute partial sums from strided inputs
// do this to increase number of loads in flight
cuLoadWriteStridedInputs(i1_beg, thr_load_row_off, thr_load_col_off, i2_off,
row_stride, warp_buf1, warp_buf2, input, dout,
i1_end, n2, mean, invvar, rms_only);
for (int i1_block = i1_beg + blockDim.y * blockDim.y; i1_block < i1_end;
i1_block += blockDim.y * blockDim.y) {
cuLoadAddStridedInputs(i1_block, thr_load_row_off, thr_load_col_off, i2_off,
row_stride, warp_buf1, warp_buf2, input, dout,
i1_end, n2, mean, invvar, rms_only);
}
__syncthreads();
// inter-warp reductions
// sum within each warp
U acc1 = U(0);
U acc2 = U(0);
for (int k = 0; k < blockDim.y; ++k) {
int row1 = threadIdx.y + k * blockDim.y;
int idx1 = row1 * row_stride + threadIdx.x;
if (!rms_only) {
acc1 += warp_buf1[idx1];
}
acc2 += warp_buf2[idx1];
}
if (!rms_only) {
warp_buf1[threadIdx.y * row_stride + threadIdx.x] = acc1;
}
warp_buf2[threadIdx.y * row_stride + threadIdx.x] = acc2;
__syncthreads();
// sum all warps
for (int offset = blockDim.y / 2; offset > 1; offset /= 2) {
if (threadIdx.y < offset) {
int row1 = threadIdx.y;
int row2 = threadIdx.y + offset;
int idx1 = row1 * row_stride + threadIdx.x;
int idx2 = row2 * row_stride + threadIdx.x;
if (!rms_only) {
warp_buf1[idx1] += warp_buf1[idx2];
}
warp_buf2[idx1] += warp_buf2[idx2];
}
__syncthreads();
}
int i2 = blockIdx.x * blockDim.x + threadIdx.x;
if (threadIdx.y == 0 && i2 < n2) {
int row1 = threadIdx.y;
int row2 = threadIdx.y + 1;
int idx1 = row1 * row_stride + threadIdx.x;
int idx2 = row2 * row_stride + threadIdx.x;
if (!rms_only) {
part_grad_beta[blockIdx.y * n2 + i2] = warp_buf1[idx1] + warp_buf1[idx2];
}
part_grad_gamma[blockIdx.y * n2 + i2] = warp_buf2[idx1] + warp_buf2[idx2];
}
}
template <typename U, typename V>
__global__ void
cuComputeGradGammaBeta(const U *part_grad_gamma, const U *part_grad_beta,
const int part_size, const int n1, const int n2,
V *grad_gamma, V *grad_beta, bool rms_only) {
// sum partial gradients for gamma and beta
SharedMemory<U> shared;
U *buf = shared.getPointer();
int i2 = blockIdx.x * blockDim.x + threadIdx.x;
if (i2 < n2) {
// each warp does sequential reductions until reduced part_size is num_warps
int num_warp_reductions = part_size / blockDim.y;
U sum_gamma = U(0);
U sum_beta = U(0);
const U *part_grad_gamma_ptr =
part_grad_gamma + threadIdx.y * num_warp_reductions * n2 + i2;
const U *part_grad_beta_ptr =
part_grad_beta + threadIdx.y * num_warp_reductions * n2 + i2;
for (int warp_offset = 0; warp_offset < num_warp_reductions;
++warp_offset) {
sum_gamma += part_grad_gamma_ptr[warp_offset * n2];
if (!rms_only) {
sum_beta += part_grad_beta_ptr[warp_offset * n2];
}
}
// inter-warp reductions
const int nbsize3 = blockDim.x * blockDim.y / 2;
for (int offset = blockDim.y / 2; offset >= 1; offset /= 2) {
// top half write to shared memory
if (threadIdx.y >= offset && threadIdx.y < 2 * offset) {
const int write_idx = (threadIdx.y - offset) * blockDim.x + threadIdx.x;
buf[write_idx] = sum_gamma;
if (!rms_only) {
buf[write_idx + nbsize3] = sum_beta;
}
}
__syncthreads();
// bottom half sums
if (threadIdx.y < offset) {
const int read_idx = threadIdx.y * blockDim.x + threadIdx.x;
sum_gamma += buf[read_idx];
if (!rms_only) {
sum_beta += buf[read_idx + nbsize3];
}
}
__syncthreads();
}
// write out fully summed gradients
if (threadIdx.y == 0) {
grad_gamma[i2] = sum_gamma;
if (!rms_only) {
grad_beta[i2] = sum_beta;
}
}
}
}
template <typename T, typename U, typename V>
__global__ void
cuComputeGradInput(const V *__restrict__ dout, const T *__restrict__ input,
const int n1, const int n2, const U *__restrict__ mean,
const U *__restrict__ invvar, U epsilon, const V *gamma,
T *grad_input, bool rms_only) {
for (auto i1 = blockIdx.y; i1 < n1; i1 += gridDim.y) {
U sum_loss1 = U(0);
U sum_loss2 = U(0);
U c_mean;
if (!rms_only) {
c_mean = mean[i1];
}
const U c_invvar = invvar[i1];
const T *k_input = input + i1 * n2;
const V *k_dout = dout + i1 * n2;
const int numx = blockDim.x * blockDim.y;
const int thrx = threadIdx.x + threadIdx.y * blockDim.x;
if (gamma != NULL) {
int l = 4 * thrx;
for (; l + 3 < n2; l += 4 * numx) {
for (int k = 0; k < 4; ++k) {
const U c_h = static_cast<U>(k_input[l + k]);
const U c_loss = static_cast<U>(k_dout[l + k]);
if (!rms_only) {
sum_loss1 += c_loss * static_cast<U>(gamma[l + k]);
sum_loss2 += c_loss * static_cast<U>(gamma[l + k]) *
(c_h - c_mean) * c_invvar;
} else {
sum_loss2 += c_loss * static_cast<U>(gamma[l + k]) * (c_h)*c_invvar;
}
}
}
for (; l < n2; ++l) {
const U c_h = static_cast<U>(k_input[l]);
const U c_loss = static_cast<U>(k_dout[l]);
if (!rms_only) {
sum_loss1 += c_loss * static_cast<U>(gamma[l]);
sum_loss2 +=
c_loss * static_cast<U>(gamma[l]) * (c_h - c_mean) * c_invvar;
} else {
sum_loss2 += c_loss * static_cast<U>(gamma[l]) * (c_h)*c_invvar;
}
}
} else {
int l = 4 * thrx;
for (; l + 3 < n2; l += 4 * numx) {
for (int k = 0; k < 4; ++k) {
const U c_h = static_cast<U>(k_input[l + k]);
const U c_loss = static_cast<U>(k_dout[l + k]);
if (!rms_only) {
sum_loss1 += c_loss;
sum_loss2 += c_loss * (c_h - c_mean) * c_invvar;
} else {
sum_loss2 += c_loss * (c_h)*c_invvar;
}
}
}
for (; l < n2; ++l) {
const U c_h = static_cast<U>(k_input[l]);
const U c_loss = static_cast<U>(k_dout[l]);
if (!rms_only) {
sum_loss1 += c_loss;
sum_loss2 += c_loss * (c_h - c_mean) * c_invvar;
} else {
sum_loss2 += c_loss * (c_h)*c_invvar;
}
}
}
// intra-warp reductions
for (int mask = blockDim.x / 2; mask > 0; mask /= 2) {
if (!rms_only) {
sum_loss1 += __shfl_xor_sync(0xffffffff, sum_loss1, mask, warpSize);
}
sum_loss2 += __shfl_xor_sync(0xffffffff, sum_loss2, mask, warpSize);
}
// inter-warp reductions
if (blockDim.y > 1) {
SharedMemory<U> shared;
U *buf = shared.getPointer();
for (int offset = blockDim.y / 2; offset > 0; offset /= 2) {
// upper half of warps write to shared
if (threadIdx.y >= offset && threadIdx.y < 2 * offset) {
const int wrt_i = (threadIdx.y - offset) * blockDim.x + threadIdx.x;
if (!rms_only) {
buf[2 * wrt_i] = sum_loss1;
}
buf[2 * wrt_i + 1] = sum_loss2;
}
__syncthreads();
// lower half merges
if (threadIdx.y < offset) {
const int read_i = threadIdx.y * blockDim.x + threadIdx.x;
if (!rms_only) {
sum_loss1 += buf[2 * read_i];
}
sum_loss2 += buf[2 * read_i + 1];
}
__syncthreads();
}
if (threadIdx.y == 0) {
if (!rms_only) {
buf[2 * threadIdx.x] = sum_loss1;
}
buf[2 * threadIdx.x + 1] = sum_loss2;
}
__syncthreads();
if (threadIdx.y != 0) {
if (!rms_only) {
sum_loss1 = buf[2 * threadIdx.x];
}
sum_loss2 = buf[2 * threadIdx.x + 1];
}
}
// all threads now have the two sums over l
U fH = (U)n2;
U term1 = (U(1) / fH) * c_invvar;
T *k_grad_input = grad_input + i1 * n2;
if (gamma != NULL) {
for (int l = thrx; l < n2; l += numx) {
const U c_h = static_cast<U>(k_input[l]);
const U c_loss = static_cast<U>(k_dout[l]);
U f_grad_input = fH * c_loss * static_cast<U>(gamma[l]);
if (!rms_only) {
f_grad_input -= sum_loss1;
f_grad_input -= (c_h - c_mean) * c_invvar * sum_loss2;
} else {
f_grad_input -= (c_h)*c_invvar * sum_loss2;
}
f_grad_input *= term1;
k_grad_input[l] = static_cast<T>(f_grad_input);
}
} else {
for (int l = thrx; l < n2; l += numx) {
const U c_h = static_cast<U>(k_input[l]);
const U c_loss = static_cast<U>(k_dout[l]);
U f_grad_input = fH * c_loss;
if (!rms_only) {
f_grad_input -= sum_loss1;
f_grad_input -= (c_h - c_mean) * c_invvar * sum_loss2;
} else {
f_grad_input -= (c_h)*c_invvar * sum_loss2;
}
f_grad_input *= term1;
k_grad_input[l] = static_cast<T>(f_grad_input);
}
}
// prevent race where buf is written again before reads are done
__syncthreads();
}
}
template <typename T, typename U = float, typename V = T>
void HostRMSNormGradient(cudaStream_t stream, const V *dout, const U *invvar,
const T *input, int n1, int n2, const V *gamma,
double epsilon, T *grad_input, V *grad_gamma,
int part_size, U *part_grad_gamma) {
auto getMaxGridY = []() {
int device;
int val;
cudaGetDevice(&device);
cudaDeviceGetAttribute(&val, cudaDevAttrMaxGridDimY, device);
return val;
};
const uint64_t maxGridY = getMaxGridY();
if (gamma != NULL) {
const dim3 threads2(32, 4, 1);
const dim3 blocks2((n2 + threads2.x - 1) / threads2.x, part_size, 1);
const int nshared2_a =
2 * sizeof(U) * threads2.y * threads2.y * (threads2.x + 1);
const int nshared2_b = threads2.x * threads2.y * sizeof(U);
const int nshared2 = nshared2_a > nshared2_b ? nshared2_a : nshared2_b;
// note (mkozuki): I can hard code part_grad_gamma's dtype as float given
// that the `cuda_layer_norm_gradient` doesn't support double.
cuComputePartGradGammaBeta<<<blocks2, threads2, nshared2, stream>>>(
dout, input, n1, n2,
invvar, // unused
invvar, U(epsilon), part_grad_gamma, part_grad_gamma, /* unused */
true);
const dim3 threads3(32, 8, 1);
const dim3 blocks3((n2 + threads2.x - 1) / threads2.x, 1, 1);
const int nshared3 = threads3.x * threads3.y * sizeof(U);
cuComputeGradGammaBeta<<<blocks3, threads3, nshared3, stream>>>(
part_grad_gamma, part_grad_gamma, /* unused */
part_size, n1, n2, grad_gamma, grad_gamma, /* unused */
true);
}
// compute grad_input
const dim3 blocks1(1, std::min((uint64_t)n1, maxGridY), 1);
const dim3 threads1(32, 4, 1);
int nshared = threads1.y > 1 ? threads1.y * threads1.x * sizeof(U) : 0;
cuComputeGradInput<<<blocks1, threads1, nshared, stream>>>(
dout, input, n1, n2, invvar, /* unused */
invvar, U(epsilon), gamma, grad_input, true);
}
} // namespace
namespace gpu_ops {
void rms_forward_affine_mixed_dtypes(cudaStream_t stream, void **buffers,
const char *opaque,
std::size_t opaque_len) {
const RMSNormDescriptor &d =
*UnpackDescriptor<RMSNormDescriptor>(opaque, opaque_len);
DISPATCH_DOUBLE_FLOAT_HALF_AND_BFLOAT_INOUT_TYPES(
d.x_type, d.w_type, "rms_norm_cuda_kernel",
HostApplyRMSNorm<scalar_t_in, accscalar_t, scalar_t_out>(
stream, static_cast<scalar_t_out *>(buffers[2]),
static_cast<accscalar_t *>(buffers[3]),
static_cast<scalar_t_in *>(buffers[0]), d.n1, d.n2, d.eps,
/*gamma=*/static_cast<scalar_t_out *>(buffers[1]));)
}
void rms_backward_affine(cudaStream_t stream, void **buffers,
const char *opaque, std::size_t opaque_len) {
const RMSNormDescriptor &d =
*UnpackDescriptor<RMSNormDescriptor>(opaque, opaque_len);
DISPATCH_DOUBLE_FLOAT_HALF_AND_BFLOAT_INOUT_TYPES(
d.x_type, d.w_type, "cuComputeGradInputRMS",
HostRMSNormGradient(
stream,
/*dout=*/static_cast<scalar_t_out *>(buffers[0]),
/*invvar=*/static_cast<accscalar_t *>(buffers[1]),
/*input=*/static_cast<scalar_t_in *>(buffers[2]), d.n1, d.n2,
// TMJ pass NULL argument for gamma, beta, grad_gamma and grad_beta
// if gamma Tensor is NULL on input.
/*gamma=*/static_cast<scalar_t_out *>(buffers[3]), d.eps,
/*grad_input=*/static_cast<scalar_t_in *>(buffers[4]),
/*grad_gamma=*/static_cast<scalar_t_out *>(buffers[5]),
d.part_grad_size,
/*part_grad_gamma=*/static_cast<accscalar_t *>(buffers[6]));)
}
} // namespace gpu_ops