PiperOrigin-RevId: 366119851
This commit is contained in:
Jake VanderPlas 2021-03-31 14:43:04 -07:00 committed by jax authors
parent 632876d773
commit 640e62c7da
3 changed files with 3 additions and 58 deletions

View File

@ -333,46 +333,6 @@ def _promote_args_inexact(fun_name, *args):
def _constant_like(x, const):
return np.array(const, dtype=_dtype(x))
def _convert_and_clip_integer(val, dtype):
"""
Convert integer-typed val to specified integer dtype, clipping to dtype
range rather than wrapping.
Args:
val: value to be converted
dtype: dtype of output
Returns:
equivalent of val in new dtype
Examples
--------
Normal integer type conversion will wrap:
>>> val = jnp.uint32(0xFFFFFFFF)
>>> val.astype('int32')
DeviceArray(-1, dtype=int32)
This function clips to the values representable in the new type:
>>> _convert_and_clip_integer(val, 'int32')
DeviceArray(2147483647, dtype=int32)
"""
val = val if isinstance(val, ndarray) else asarray(val)
dtype = dtypes.canonicalize_dtype(dtype)
if not (issubdtype(dtype, integer) and issubdtype(val.dtype, integer)):
raise TypeError("_convert_and_clip_integer only accepts integer dtypes.")
val_dtype = dtypes.canonicalize_dtype(val.dtype)
if val_dtype != val.dtype:
# TODO(jakevdp): this is a weird corner case; need to figure out how to handle it.
# This happens in X32 mode and can either come from a jax value created in another
# context, or a Python integer converted to int64.
pass
min_val = _constant_like(val, _max(iinfo(dtype).min, iinfo(val_dtype).min))
max_val = _constant_like(val, _min(iinfo(dtype).max, iinfo(val_dtype).max))
return clip(val, min_val, max_val).astype(dtype)
### implementations of numpy functions in terms of lax
@_wraps(np.fmin)

View File

@ -25,7 +25,7 @@ from jax import numpy as jnp
from jax import dtypes
from jax.core import NamedShape
from jax.api import jit, vmap
from jax._src.numpy.lax_numpy import _constant_like, _convert_and_clip_integer, asarray
from jax._src.numpy.lax_numpy import _constant_like, asarray
from jax.lib import xla_bridge
from jax.lib import xla_client
from jax.lib import cuda_prng
@ -443,8 +443,8 @@ def _randint(key, shape, minval, maxval, dtype):
if not jnp.issubdtype(dtype, np.integer):
raise TypeError("randint only accepts integer dtypes.")
minval = _convert_and_clip_integer(minval, dtype)
maxval = _convert_and_clip_integer(maxval, dtype)
minval = lax.convert_element_type(minval, dtype)
maxval = lax.convert_element_type(maxval, dtype)
minval = lax.broadcast_to_rank(minval, len(shape))
maxval = lax.broadcast_to_rank(maxval, len(shape))
nbits = jnp.iinfo(dtype).bits

View File

@ -26,7 +26,6 @@ import scipy.stats
from jax import api
from jax import core
from jax import dtypes
from jax import grad
from jax import lax
from jax import numpy as jnp
@ -984,20 +983,6 @@ class LaxRandomTest(jtu.JaxTestCase):
api.jit(random.split)(key)
self.assertEqual(count[0], 1) # 1 for the argument device_put
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": f"_dtype={dtype}", "dtype": dtype}
for dtype in int_dtypes + uint_dtypes))
def test_randint_bounds(self, dtype):
min = np.iinfo(dtype).min
max = np.iinfo(dtype).max
key = random.PRNGKey(1701)
shape = (10,)
if np.iinfo(dtype).bits < np.iinfo(dtypes.canonicalize_dtype(int)).bits:
expected = random.randint(key, shape, min, max, dtype)
self.assertArraysEqual(expected, random.randint(key, shape, min - 12345, max + 12345, dtype))
else:
self.assertRaises(OverflowError, random.randint, key, shape, min - 12345, max + 12345, dtype)
if __name__ == "__main__":
absltest.main(testLoader=jtu.JaxTestLoader())