diff --git a/docs/notebooks/convolutions.ipynb b/docs/notebooks/convolutions.ipynb index 9d91804b6..01b8a2be0 100644 --- a/docs/notebooks/convolutions.ipynb +++ b/docs/notebooks/convolutions.ipynb @@ -121,13 +121,13 @@ } ], "source": [ - "from scipy import misc\n", + "from scipy import datasets\n", "import jax.scipy as jsp\n", "\n", "fig, ax = plt.subplots(1, 3, figsize=(12, 5))\n", "\n", "# Load a sample image; compute mean() to convert from RGB to grayscale.\n", - "image = jnp.array(misc.face().mean(-1))\n", + "image = jnp.array(datasets.face().mean(-1))\n", "ax[0].imshow(image, cmap='binary_r')\n", "ax[0].set_title('original')\n", "\n", diff --git a/docs/notebooks/convolutions.md b/docs/notebooks/convolutions.md index b98099aa9..7d58cc2b4 100644 --- a/docs/notebooks/convolutions.md +++ b/docs/notebooks/convolutions.md @@ -75,13 +75,13 @@ For example, here is a simple approach to de-noising an image based on convoluti :id: Jk5qdnbv6QgT :outputId: 292205eb-aa09-446f-eec2-af8c23cfc718 -from scipy import misc +from scipy import datasets import jax.scipy as jsp fig, ax = plt.subplots(1, 3, figsize=(12, 5)) # Load a sample image; compute mean() to convert from RGB to grayscale. -image = jnp.array(misc.face().mean(-1)) +image = jnp.array(datasets.face().mean(-1)) ax[0].imshow(image, cmap='binary_r') ax[0].set_title('original') diff --git a/docs/requirements.txt b/docs/requirements.txt index bfbb4e271..5d49222bb 100644 --- a/docs/requirements.txt +++ b/docs/requirements.txt @@ -17,6 +17,7 @@ pytest-xdist # Packages used for notebook execution matplotlib scikit-learn +pooch numpy rich[jupyter] cmake