Add an optional mode= argument to jnp.take_along_axis.

This allows users of jnp.take_along_axis to override the out-of-bounds indexing behavior.
Default to "clip", which for the forward computation is identical to the current behavior. In a future change, we will change this to "fill".
This commit is contained in:
Peter Hawkins 2022-04-19 16:05:29 -04:00
parent 7008b32132
commit a52f07a21b
3 changed files with 34 additions and 5 deletions

View File

@ -16,6 +16,8 @@ PLEASE REMEMBER TO CHANGE THE '..main' WITH AN ACTUAL TAG in GITHUB LINK.
* `jax.experimental.maps.mesh` has been deleted.
Please use `jax.experimental.maps.Mesh`. Please see https://jax.readthedocs.io/en/latest/_autosummary/jax.experimental.maps.Mesh.html#jax.experimental.maps.Mesh
for more information.
* {func}`jax.numpy.take_along_axis` now takes an optional `mode` parameter
that specifies the behavior of out-of-bounds indexing.
## jaxlib 0.3.8 (Unreleased)
* [GitHub

View File

@ -3427,12 +3427,24 @@ def _normalize_index(index, axis_size):
lax.add(index, axis_size_val),
index)
@_wraps(np.take_along_axis, update_doc=False)
@partial(jit, static_argnames=('axis',))
def take_along_axis(arr, indices, axis: Optional[int]):
TAKE_ALONG_AXIS_DOC = """
Unlike :func:`numpy.take_along_axis`, :func:`jax.numpy.take_along_axis` takes
an optional ``mode`` parameter controlling how out-of-bounds indices should be
handled. By default, out-of-bounds indices are clamped into range. In a future
change, out-of-bounds indices will return invalid (e.g., ``NaN``) values
instead. See :attr:`jax.numpy.ndarray.at` for more discussion
of out-of-bounds indexing in JAX.
"""
@_wraps(np.take_along_axis, update_doc=False,
lax_description=TAKE_ALONG_AXIS_DOC)
@partial(jit, static_argnames=('axis', 'mode'))
def take_along_axis(arr, indices, axis: Optional[int],
mode: Optional[Union[str, lax.GatherScatterMode]] = None):
_check_arraylike("take_along_axis", arr, indices)
# index_dtype = dtypes.dtype(indices)
# TODO(phawkins): reenalbe this check after fixing callers
# TODO(phawkins): reenable this check after fixing callers
# if not dtypes.issubdtype(index_dtype, integer):
# raise TypeError("take_along_axis indices must be of integer type, got "
# f"{str(index_dtype)}")
@ -3510,7 +3522,8 @@ def take_along_axis(arr, indices, axis: Optional[int]):
collapsed_slice_dims=tuple(collapsed_slice_dims),
start_index_map=tuple(start_index_map))
# TODO(phawkins): change the mode to "fill".
return lax.gather(arr, gather_indices, dnums, tuple(slice_sizes))
return lax.gather(arr, gather_indices, dnums, tuple(slice_sizes),
mode="clip" if mode is None else mode)
### Indexing

View File

@ -4573,6 +4573,19 @@ class LaxBackedNumpyTests(jtu.JaxTestCase):
q1 = np.take_along_axis( h, g, axis=-1)
np.testing.assert_equal(q0, q1)
def testTakeAlongAxisOutOfBounds(self):
x = jnp.arange(10, dtype=jnp.float32)
idx = jnp.array([-11, -10, -9, -5, -1, 0, 1, 5, 9, 10, 11])
out = jnp.take_along_axis(x, idx, axis=0)
expected_clip = np.array([0, 0, 1, 5, 9, 0, 1, 5, 9, 9, 9], np.float32)
np.testing.assert_array_equal(expected_clip, out)
out = jnp.take_along_axis(x, idx, axis=0, mode="clip")
np.testing.assert_array_equal(expected_clip, out)
expected_fill = np.array([jnp.nan, 0, 1, 5, 9, 0, 1, 5, 9, jnp.nan,
jnp.nan], np.float32)
out = jnp.take_along_axis(x, idx, axis=0, mode="fill")
np.testing.assert_array_equal(expected_fill, out)
@parameterized.named_parameters(jtu.cases_from_list(
{"testcase_name": "_shape={}_n={}_increasing={}".format(
jtu.format_shape_dtype_string([shape], dtype),
@ -6162,6 +6175,7 @@ class NumpySignaturesTest(jtu.JaxTestCase):
'broadcast_to': ['arr'],
'einsum': ['precision'],
'einsum_path': ['subscripts'],
'take_along_axis': ['mode'],
}
mismatches = {}