Fix lax.ragged_all_to_all degenerate case

In a singleton group case, unlike regular all_to_all, the ragged op becomes a generic equivalent of DynamicUpdateSlice, except update size is not statically known. This operation can't be expressed with standard HLO instructions -- the backend will handle this case separately.

Added small improvement to error messages.

PiperOrigin-RevId: 721473063
This commit is contained in:
Gunhyun Park 2025-01-30 12:04:28 -08:00 committed by jax authors
parent f4e2c6c34c
commit a8df383ccf
3 changed files with 98 additions and 8 deletions

View File

@ -1159,8 +1159,6 @@ def _ragged_all_to_all_lowering(
split_count = len(replica_groups[0])
if not all(split_count == len(g) for g in replica_groups):
raise ValueError('Replica groups must be equally sized')
if len(replica_groups[0]) == 1:
return [operand]
ragged_all_to_all_attrs = {
"replica_groups": _replica_groups_hlo(replica_groups)

View File

@ -1390,6 +1390,10 @@ jax_multiplatform_test(
enable_configs = [
"gpu_p100x2_shardy",
],
shard_count = {
"gpu": 10,
"tpu": 10,
},
tags = [
"multiaccelerator",
],

View File

@ -45,10 +45,10 @@ class RaggedCollectiveTest(jtu.JaxTestCase):
)
def test_ragged_all_to_all(self, axis_name, mesh_axes):
device_type = jax.devices()[0].platform
if device_type == 'tpu' and jtu.get_tpu_version() == 3:
if device_type == 'tpu' and jtu.get_tpu_version() < 4:
raise unittest.SkipTest(
'UNSUPPORTED: HLO opcode `ragged-all-to-all` is not supported by'
' TPU v3'
'UNSUPPORTED: HLO opcode `ragged-all-to-all` is not supported by TPU'
f' v{jtu.get_tpu_version()}'
)
mesh = jtu.create_mesh(tuple(mesh_axes.values()), tuple(mesh_axes.keys()))
operand = jax.device_put(
@ -132,10 +132,10 @@ class RaggedCollectiveTest(jtu.JaxTestCase):
)
def test_ragged_all_to_all_axis_index_groups(self, axis_name, mesh_axes):
device_type = jax.devices()[0].platform
if device_type == 'tpu' and jtu.get_tpu_version() == 3:
if device_type == 'tpu' and jtu.get_tpu_version() < 4:
raise unittest.SkipTest(
'UNSUPPORTED: HLO opcode `ragged-all-to-all` is not supported by'
' TPU v3'
'UNSUPPORTED: HLO opcode `ragged-all-to-all` is not supported by TPU'
f' v{jtu.get_tpu_version()}'
)
mesh = jtu.create_mesh(tuple(mesh_axes.values()), tuple(mesh_axes.keys()))
operand = jax.device_put(
@ -219,6 +219,94 @@ class RaggedCollectiveTest(jtu.JaxTestCase):
[10, 30, 0, 0], [20, 20, 40, 0]], dtype=jnp.int32)
)
@parameterized.named_parameters(
dict(
testcase_name='_single_axis_name', axis_name='x', mesh_axes=dict(x=2)
),
)
def test_ragged_all_to_all_degenerate_groups(self, axis_name, mesh_axes):
device_type = jax.devices()[0].platform
if device_type == 'tpu':
raise unittest.SkipTest(
'UNSUPPORTED: HLO opcode `ragged-all-to-all` with singleton group is'
' not supported by TPU'
)
mesh = jtu.create_mesh(tuple(mesh_axes.values()), tuple(mesh_axes.keys()))
operand = jax.device_put(
jnp.array([[1, 0, 0, 0], [2, 3, 4, 0]], dtype=jnp.int32),
jax.sharding.NamedSharding(mesh, P(axis_name, None)),
)
output = jax.device_put(
jnp.zeros((2, 4), dtype=jnp.int32),
jax.sharding.NamedSharding(mesh, P(axis_name, None)),
)
input_offsets = jax.device_put(
jnp.array([[0], [0]], dtype=jnp.int32),
jax.sharding.NamedSharding(mesh, P(axis_name, None)),
)
send_sizes = jax.device_put(
jnp.array([[1], [3]], dtype=jnp.int32),
jax.sharding.NamedSharding(mesh, P(axis_name, None)),
)
output_offsets = jax.device_put(
jnp.array([[2], [1]], dtype=jnp.int32),
jax.sharding.NamedSharding(mesh, P(axis_name, None)),
)
recv_sizes = jax.device_put(
jnp.array([[1], [3]], dtype=jnp.int32),
jax.sharding.NamedSharding(mesh, P(axis_name, None)),
)
axis_index_groups = ((0,), (1,))
@jax.jit
@partial(
shard_map,
mesh=mesh,
in_specs=(
P(axis_name, None),
P(axis_name, None),
P(axis_name, None),
P(axis_name, None),
P(axis_name, None),
P(axis_name, None),
),
out_specs=P(axis_name),
check_rep=False,
)
def fwd(
operand, output, input_offsets, send_sizes, output_offsets, recv_sizes
):
operand = operand.reshape(operand.shape[1:])
output = output.reshape(output.shape[1:])
input_offsets = input_offsets.reshape(input_offsets.shape[1:])
send_sizes = send_sizes.reshape(send_sizes.shape[1:])
output_offsets = output_offsets.reshape(output_offsets.shape[1:])
recv_sizes = recv_sizes.reshape(recv_sizes.shape[1:])
return lax.ragged_all_to_all(
operand,
output,
input_offsets,
send_sizes,
output_offsets,
recv_sizes,
axis_name=axis_name,
axis_index_groups=axis_index_groups,
)
mlir_module = fwd.lower(
operand, output, input_offsets, send_sizes, output_offsets,
recv_sizes).as_text()
self.assertIn("stablehlo.custom_call @ragged_all_to_all", mlir_module)
self.assertIn("replica_groups = dense<[[0], [1]]> : tensor<2x1xi64>",
mlir_module)
c = fwd(
operand, output, input_offsets, send_sizes, output_offsets, recv_sizes
).reshape((2, 4))
self.assertAllClose(
c, jnp.array([[0, 0, 1, 0], [0, 2, 3, 4]], dtype=jnp.int32)
)
if __name__ == '__main__':
absltest.main(testLoader=jtu.JaxTestLoader())