mirror of
https://github.com/ROCm/jax.git
synced 2025-04-15 19:36:06 +00:00
Add JAX API that provides sparse matmul support (2:4 structured sparsity)
Usage: from jax.experimental.sparse import nm res = nm.nm_spmm(lhs, rhs, nm.nm_pack(mask)) where: lhs.shape = [M, K/2] rhs.shape = [K, N] `mask` has the same shape as `lhs` with boolean type If batch dimensions are present, the `dimension_numbers` argument has to be set to: ((lhs_contracting_dims, rhs_contracting_dims), (lhs_batch_dims, rhs_batch_dims)) The lowering only works on nVidia GPUs, that provide hardware support for sparse dots. PiperOrigin-RevId: 627640553
This commit is contained in:
parent
b5fdc0d90f
commit
aebe82a78f
241
jax/experimental/sparse/nm.py
Normal file
241
jax/experimental/sparse/nm.py
Normal file
@ -0,0 +1,241 @@
|
||||
# Copyright 2024 The JAX Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# https://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
"""N:M-sparsity associated primitives."""
|
||||
|
||||
from jax import core
|
||||
from jax._src import dispatch
|
||||
from jax._src.lax.lax import DotDimensionNumbers
|
||||
from jax._src.lib import gpu_sparse
|
||||
from jax._src.lib.mlir.dialects import mhlo
|
||||
from jax._src.typing import Array, DTypeLike
|
||||
from jax.interpreters import mlir
|
||||
import jax.numpy as jnp
|
||||
import numpy as np
|
||||
|
||||
# --------------------------------------------------------------------
|
||||
# nm_spmm
|
||||
|
||||
nm_spmm_p = core.Primitive("sparse_dense_matmul")
|
||||
|
||||
_supported_input_types = (jnp.int8, jnp.int16, jnp.float16, jnp.bfloat16)
|
||||
_supported_output_types = (jnp.bfloat16, jnp.float32)
|
||||
|
||||
|
||||
def nm_spmm(
|
||||
lhs: Array,
|
||||
rhs: Array,
|
||||
metadata: Array,
|
||||
dimension_numbers: DotDimensionNumbers = (((1,), (0,)), (tuple(), tuple())),
|
||||
sparse_operand_idx: int = 0,
|
||||
output_dtype: DTypeLike = jnp.bfloat16,
|
||||
) -> Array:
|
||||
"""Dot operation where one of the operands has N:M sparsity.
|
||||
|
||||
Args:
|
||||
lhs: An ndarray (first dot operand).
|
||||
rhs: An ndarray (second dot operand).
|
||||
metadata: An ndarray with structured sparsity metadata for the contracting
|
||||
dimension. For 2:4 sparsity it should contain (N=2) two-bit index values
|
||||
for each (M=4) element group.
|
||||
dimension_numbers: a tuple of tuples of the form `((lhs_contracting_dims,
|
||||
rhs_contracting_dims), (lhs_batch_dims, rhs_batch_dims))`.
|
||||
sparse_operand_idx: index of the sparse operand (0 or 1).
|
||||
output_dtype: result type.
|
||||
|
||||
Returns:
|
||||
An ndarray dense array containing the result.
|
||||
"""
|
||||
return nm_spmm_p.bind(
|
||||
lhs,
|
||||
rhs,
|
||||
metadata,
|
||||
dimension_numbers=dimension_numbers,
|
||||
sparse_operand_idx=sparse_operand_idx,
|
||||
output_dtype=output_dtype,
|
||||
)
|
||||
|
||||
|
||||
def _calc_groups_per_element(n, m):
|
||||
group_bits = n * (m.bit_length() - 1) # 4 bits per group for 2:4
|
||||
return 16 // group_bits
|
||||
|
||||
|
||||
def _validate_dnums(rank, contract, batch, name):
|
||||
non_contract = tuple(sorted(set(range(rank)) - set(contract + batch)))
|
||||
if sorted(non_contract + contract + batch) != list(range(rank)):
|
||||
raise TypeError(f"Incorrect dimension numbers for {name}")
|
||||
return non_contract
|
||||
|
||||
|
||||
def _validate_metadata(lhs, rhs, metadata, dimension_numbers, index, n=2, m=4):
|
||||
assert index in (0, 1)
|
||||
size_factor = n * _calc_groups_per_element(n, m)
|
||||
|
||||
sparse = [lhs, rhs][index]
|
||||
sparse_contract = dimension_numbers[0][index]
|
||||
if metadata.dtype != np.uint16:
|
||||
raise TypeError(f"Metadata must be uint16, got {metadata.dtype}")
|
||||
if sparse_contract[0] != sparse.ndim - 1:
|
||||
raise TypeError("Contracting dimension must be the minor one")
|
||||
if metadata.shape[:-1] != sparse.shape[:-1]:
|
||||
raise TypeError(
|
||||
"Metadata shape must match the operand shape (except for the"
|
||||
" contracting dimension)"
|
||||
)
|
||||
if metadata.shape[-1] * size_factor != sparse.shape[-1]:
|
||||
raise TypeError(
|
||||
f"Metadata must be exactly {size_factor} times less than the"
|
||||
f" contracting dimension for {n}:{m} structured sparsity (expected"
|
||||
f" {sparse.shape[-1] // size_factor}, got {metadata.shape[-1]})"
|
||||
)
|
||||
if sparse.shape[-1] % size_factor != 0:
|
||||
raise NotImplementedError("Metadata with padding is not supported")
|
||||
|
||||
dense = [lhs, rhs][1 - index]
|
||||
dense_contract = dimension_numbers[0][1 - index]
|
||||
a, b = sparse.shape[sparse_contract[0]], dense.shape[dense_contract[0]]
|
||||
if n * b != m * a:
|
||||
raise TypeError(
|
||||
f"Contracting dimension sizes should have {n}:{m} ratio, got {a}:{b}"
|
||||
)
|
||||
|
||||
|
||||
def _infer_result_shape(lhs, rhs, dimension_numbers):
|
||||
((lhs_contract, rhs_contract), (lhs_batch, rhs_batch)) = dimension_numbers
|
||||
if len(lhs_contract) != 1 or len(rhs_contract) != 1:
|
||||
raise TypeError("Only single contracting dimension is supported")
|
||||
lhs_dims = _validate_dnums(lhs.ndim, lhs_contract, lhs_batch, "lhs")
|
||||
rhs_dims = _validate_dnums(rhs.ndim, rhs_contract, rhs_batch, "rhs")
|
||||
if len(lhs_dims) != 1 or len(rhs_dims) != 1:
|
||||
raise TypeError("Only single non-contracting dimension is supported")
|
||||
batch = [lhs.shape[i] for i in lhs_batch]
|
||||
if batch != [rhs.shape[i] for i in rhs_batch]:
|
||||
raise TypeError("Batch dimension sizes do not match")
|
||||
return tuple(batch + [lhs.shape[lhs_dims[0]], rhs.shape[rhs_dims[0]]])
|
||||
|
||||
|
||||
def _nm_spmm_default_lowering(*_args, **_kwargs):
|
||||
raise NotImplementedError("Sparse N:M matmul is only implemented on GPU")
|
||||
|
||||
|
||||
def _nm_spmm_gpu_lowering(
|
||||
ctx,
|
||||
lhs,
|
||||
rhs,
|
||||
metadata,
|
||||
*,
|
||||
dimension_numbers,
|
||||
sparse_operand_idx,
|
||||
output_dtype,
|
||||
):
|
||||
assert sparse_operand_idx in (0, 1)
|
||||
sparsity_descriptor = mhlo.SparsityDescriptor.get(
|
||||
dimension=dimension_numbers[0][sparse_operand_idx][0], n=2, m=4
|
||||
)
|
||||
dot_dnums = mhlo.DotDimensionNumbers.get(
|
||||
lhs_batching_dimensions=dimension_numbers[1][sparse_operand_idx],
|
||||
rhs_batching_dimensions=dimension_numbers[1][1 - sparse_operand_idx],
|
||||
lhs_contracting_dimensions=dimension_numbers[0][sparse_operand_idx],
|
||||
rhs_contracting_dimensions=dimension_numbers[0][1 - sparse_operand_idx],
|
||||
)
|
||||
dot_type = ctx.avals_out[0]
|
||||
key = ["lhs_sparsity", "rhs_sparsity"][sparse_operand_idx]
|
||||
kwargs = {key: sparsity_descriptor}
|
||||
op = mhlo.SparseDotOp(
|
||||
mlir.aval_to_ir_type(dot_type), lhs, rhs, [metadata], dot_dnums, **kwargs
|
||||
)
|
||||
return op.results
|
||||
|
||||
|
||||
@nm_spmm_p.def_abstract_eval
|
||||
def _nm_spmm_abstract_eval(
|
||||
lhs, rhs, metadata, *, dimension_numbers, sparse_operand_idx, output_dtype
|
||||
):
|
||||
if lhs.dtype not in _supported_input_types:
|
||||
raise TypeError(f"Unsupported lhs input type: {lhs.dtype}")
|
||||
if rhs.dtype not in _supported_input_types:
|
||||
raise TypeError(f"Unsupported rhs input type: {rhs.dtype}")
|
||||
if output_dtype not in _supported_output_types:
|
||||
raise TypeError(f"Unsupported output type: {output_dtype}")
|
||||
|
||||
res_shape = _infer_result_shape(lhs, rhs, dimension_numbers)
|
||||
_validate_metadata(lhs, rhs, metadata, dimension_numbers, sparse_operand_idx)
|
||||
return core.ShapedArray(res_shape, output_dtype)
|
||||
|
||||
|
||||
mlir.register_lowering(nm_spmm_p, _nm_spmm_default_lowering)
|
||||
dispatch.simple_impl(nm_spmm_p)
|
||||
|
||||
if gpu_sparse.cuda_is_supported:
|
||||
mlir.register_lowering(nm_spmm_p, _nm_spmm_gpu_lowering, platform="cuda")
|
||||
|
||||
# --------------------------------------------------------------------
|
||||
# nm_pack
|
||||
|
||||
nm_pack_p = core.Primitive("sparse_pack_nm")
|
||||
|
||||
|
||||
def nm_pack(mask: Array, n=2, m=4) -> Array:
|
||||
"""Generate metadata tensor for an N:M mask.
|
||||
|
||||
Args:
|
||||
mask: Predicates for the input tensor, where the elements are grouped in the
|
||||
minor dimension. In each group of size M there should be exactly N true
|
||||
values, which mark the data elements to keep.
|
||||
n: Number of non-zero elements in a group.
|
||||
m: Group size.
|
||||
|
||||
Returns:
|
||||
An ndarray containing only the masked input elements.
|
||||
"""
|
||||
return nm_pack_p.bind(mask, n=n, m=m)
|
||||
|
||||
|
||||
def _compress(data, n, m, k):
|
||||
result = []
|
||||
expected = n * (k // m)
|
||||
for i in range(0, len(data), k):
|
||||
index = tuple(jnp.nonzero(data[i : i + k], size=expected)[0] % m)
|
||||
value = sum(j * pow(m, i) for i, j in enumerate(index))
|
||||
result.append(value)
|
||||
return jnp.array(result, dtype=np.uint16)
|
||||
|
||||
|
||||
@nm_pack_p.def_impl
|
||||
def _nm_pack_impl(mask, *, n, m):
|
||||
batch_size = m * _calc_groups_per_element(n, m)
|
||||
return jnp.apply_along_axis(
|
||||
lambda x: _compress(x, n, m, batch_size), -1, mask
|
||||
)
|
||||
|
||||
|
||||
@nm_pack_p.def_abstract_eval
|
||||
def _nm_pack_abstract_eval(mask, *, n, m):
|
||||
size_factor = m * _calc_groups_per_element(n, m)
|
||||
if mask.dtype != bool:
|
||||
raise TypeError(f"Mask should be bool, got {mask.dtype}")
|
||||
if mask.shape[-1] % size_factor != 0:
|
||||
raise TypeError(
|
||||
f"Inner dimension size should be divisible by {size_factor}, got"
|
||||
f" {mask.shape}"
|
||||
)
|
||||
res_shape = list(mask.shape)
|
||||
res_shape[-1] //= size_factor
|
||||
return core.ShapedArray(res_shape, np.uint16)
|
||||
|
||||
|
||||
_nm_pack_lowering = mlir.lower_fun(_nm_pack_impl, multiple_results=False)
|
||||
mlir.register_lowering(nm_pack_p, _nm_pack_lowering)
|
||||
dispatch.simple_impl(nm_pack_p)
|
17
tests/BUILD
17
tests/BUILD
@ -984,6 +984,23 @@ jax_test(
|
||||
] + py_deps("scipy"),
|
||||
)
|
||||
|
||||
jax_test(
|
||||
name = "sparse_nm_test",
|
||||
srcs = ["sparse_nm_test.py"],
|
||||
disable_backends = [
|
||||
"cpu",
|
||||
"gpu",
|
||||
"tpu",
|
||||
],
|
||||
enable_configs = [
|
||||
"gpu_a100",
|
||||
"gpu_h100",
|
||||
],
|
||||
deps = [
|
||||
"//jax:experimental_sparse",
|
||||
],
|
||||
)
|
||||
|
||||
jax_test(
|
||||
name = "sparsify_test",
|
||||
srcs = ["sparsify_test.py"],
|
||||
|
200
tests/sparse_nm_test.py
Normal file
200
tests/sparse_nm_test.py
Normal file
@ -0,0 +1,200 @@
|
||||
# Copyright 2024 The JAX Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# https://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import math
|
||||
from absl.testing import absltest
|
||||
from absl.testing import parameterized
|
||||
|
||||
import jax
|
||||
from jax import dtypes
|
||||
from jax._src import test_util as jtu
|
||||
from jax.experimental.sparse import nm
|
||||
import jax.numpy as jnp
|
||||
import numpy as np
|
||||
|
||||
jax.config.parse_flags_with_absl()
|
||||
|
||||
|
||||
class SpmmTest(jtu.JaxTestCase):
|
||||
# ----- Test different input shapes
|
||||
@parameterized.product(
|
||||
tile_m=(32, 128),
|
||||
tile_n=(32, 128),
|
||||
tile_k=(32, 128),
|
||||
batch=(None, 5),
|
||||
sparse_idx=(0, 1),
|
||||
)
|
||||
@jtu.run_on_devices("gpu")
|
||||
def test_shapes(self, tile_m, tile_n, tile_k, batch, sparse_idx):
|
||||
# Build keyword arguments
|
||||
kwargs = {
|
||||
"dimension_numbers": (((1,), (1,)), (tuple(), tuple())),
|
||||
"sparse_operand_idx": sparse_idx,
|
||||
}
|
||||
if batch:
|
||||
kwargs["dimension_numbers"] = (((2,), (2,)), ((0,), (0,)))
|
||||
|
||||
# Build input data
|
||||
batch_dims = (batch,) if batch else tuple()
|
||||
lhs = (
|
||||
(np.arange((batch or 1) * tile_m * tile_k) % 11)
|
||||
.astype(dtypes.bfloat16)
|
||||
.reshape(batch_dims + (tile_m, tile_k))
|
||||
)
|
||||
rhs = (
|
||||
(np.arange((batch or 1) * tile_n * tile_k) % 13)
|
||||
.astype(dtypes.bfloat16)
|
||||
.reshape(batch_dims + (tile_n, tile_k))
|
||||
)
|
||||
|
||||
# Build sparsity mask and metadata
|
||||
sp = [lhs, rhs][sparse_idx]
|
||||
mask = np.tile([True, False], math.prod(sp.shape) // 2).reshape(sp.shape)
|
||||
sparse = sp[mask].reshape(sp.shape[:-1] + (sp.shape[-1] // 2,))
|
||||
meta = nm.nm_pack(mask)
|
||||
|
||||
# Calculate sparse and dense dots
|
||||
if sparse_idx == 0:
|
||||
dot_sparse = nm.nm_spmm(sparse, rhs, meta, **kwargs)
|
||||
dot_dense = jnp.einsum("...mk,...nk->...mn", (lhs * mask), rhs)
|
||||
else:
|
||||
dot_sparse = nm.nm_spmm(lhs, sparse, meta, **kwargs)
|
||||
dot_dense = jnp.einsum("...mk,...nk->...mn", lhs, (rhs * mask))
|
||||
|
||||
# Verify the result
|
||||
jtu.check_eq(dot_sparse, dot_dense.astype(dtypes.bfloat16))
|
||||
|
||||
# ----- Test different input types
|
||||
# TODO(b/336519663): add int8 type once codegen is fixed
|
||||
@parameterized.product(
|
||||
lhs_type=[jnp.int16, jnp.float16, jnp.bfloat16],
|
||||
rhs_type=[jnp.bfloat16],
|
||||
output_type=[jnp.bfloat16, jnp.float32],
|
||||
)
|
||||
@jtu.run_on_devices("gpu")
|
||||
def test_types(self, lhs_type, rhs_type, output_type):
|
||||
tile_m, tile_n, tile_k = 64, 32, 128
|
||||
|
||||
# Build input data
|
||||
lhs = (
|
||||
(np.arange(tile_m * tile_k) % 17)
|
||||
.astype(lhs_type)
|
||||
.reshape((tile_m, tile_k))
|
||||
)
|
||||
rhs = (
|
||||
(np.arange(tile_k * tile_n) % 19)
|
||||
.astype(rhs_type)
|
||||
.reshape((tile_k, tile_n))
|
||||
)
|
||||
|
||||
# Build sparsity mask and metadata
|
||||
mask = np.tile([True, False], tile_m * tile_k // 2).reshape(lhs.shape)
|
||||
sparse = lhs[mask].reshape(tile_m, tile_k // 2)
|
||||
meta = nm.nm_pack(mask)
|
||||
|
||||
# Calculate sparse and dense dots
|
||||
dot_sparse = nm.nm_spmm(sparse, rhs, meta, output_dtype=output_type)
|
||||
dot_dense = (lhs * mask) @ rhs
|
||||
|
||||
# Verify the result
|
||||
jtu.check_close(dot_sparse, dot_dense.astype(output_type), rtol=0.01)
|
||||
|
||||
# ----- Test validation
|
||||
@jtu.run_on_devices("gpu")
|
||||
def test_validate_nm_pack(self):
|
||||
with self.assertRaisesRegex(TypeError, "Mask should be bool"):
|
||||
nm.nm_pack(jnp.zeros(16, jnp.int8))
|
||||
with self.assertRaisesRegex(
|
||||
TypeError, "Inner dimension size should be divisible by 16"
|
||||
):
|
||||
nm.nm_pack(jnp.array([False] * 8))
|
||||
|
||||
@jtu.run_on_devices("gpu")
|
||||
def test_validate_nm_spmm(self):
|
||||
batch, tile_m, tile_n, tile_k = 2, 64, 32, 128
|
||||
lhs = jnp.zeros((batch, tile_m, tile_k // 2), dtype=jnp.bfloat16)
|
||||
rhs = jnp.zeros((batch, tile_k, tile_n), dtype=jnp.bfloat16)
|
||||
meta = jnp.zeros((batch, tile_m, tile_k // 16), dtype=jnp.uint16)
|
||||
|
||||
# Check types
|
||||
with self.assertRaisesRegex(TypeError, "Unsupported lhs input type"):
|
||||
nm.nm_spmm(jnp.zeros(lhs.shape, dtype=jnp.int64), rhs, meta)
|
||||
with self.assertRaisesRegex(TypeError, "Unsupported rhs input type"):
|
||||
nm.nm_spmm(lhs, jnp.zeros(rhs.shape, dtype=jnp.int64), meta)
|
||||
with self.assertRaisesRegex(TypeError, "Unsupported output type"):
|
||||
nm.nm_spmm(lhs, rhs, meta, output_dtype=jnp.int64)
|
||||
|
||||
# Check dimension numbers
|
||||
nm_spmm_with_dnums = lambda c, b: nm.nm_spmm(
|
||||
lhs, rhs, meta, dimension_numbers=(c, b)
|
||||
)
|
||||
with self.assertRaisesRegex(
|
||||
TypeError, "Only single contracting dimension is supported"
|
||||
):
|
||||
nm_spmm_with_dnums(((0, 2), (0, 1)), (tuple(), tuple()))
|
||||
with self.assertRaisesRegex(
|
||||
TypeError, "Incorrect dimension numbers for lhs"
|
||||
):
|
||||
nm_spmm_with_dnums(((2,), (1,)), ((2,), (0,)))
|
||||
with self.assertRaisesRegex(
|
||||
TypeError, "Incorrect dimension numbers for rhs"
|
||||
):
|
||||
nm_spmm_with_dnums(((2,), (1,)), ((0,), (1,)))
|
||||
with self.assertRaisesRegex(
|
||||
TypeError, "Only single non-contracting dimension is supported"
|
||||
):
|
||||
nm_spmm_with_dnums(((2,), (1,)), (tuple(), tuple()))
|
||||
with self.assertRaisesRegex(
|
||||
TypeError, "Batch dimension sizes do not match"
|
||||
):
|
||||
nm.nm_spmm(
|
||||
lhs,
|
||||
rhs.reshape(1, tile_k, tile_n * batch),
|
||||
meta,
|
||||
dimension_numbers=(((2,), (1,)), ((0,), (0,))),
|
||||
)
|
||||
|
||||
# Check metadata
|
||||
nm_spmm_with_meta = lambda m: nm.nm_spmm(
|
||||
lhs, rhs, m, dimension_numbers=(((2,), (1,)), ((0,), (0,)))
|
||||
)
|
||||
with self.assertRaisesRegex(TypeError, "Metadata must be uint16"):
|
||||
nm_spmm_with_meta(jnp.zeros(meta.shape, dtype=jnp.uint8))
|
||||
with self.assertRaisesRegex(
|
||||
TypeError, "Metadata shape must match the operand shape"
|
||||
):
|
||||
nm_spmm_with_meta(meta.reshape(1, batch * tile_m, tile_k // 16))
|
||||
with self.assertRaisesRegex(
|
||||
TypeError,
|
||||
"Metadata must be exactly 8 times less than the contracting dimension"
|
||||
" for 2:4 structured sparsity",
|
||||
):
|
||||
nm_spmm_with_meta(jnp.repeat(meta, 2, axis=-1))
|
||||
with self.assertRaisesRegex(
|
||||
TypeError, "Contracting dimension must be the minor one"
|
||||
):
|
||||
nm.nm_spmm(lhs, rhs, meta, dimension_numbers=(((1,), (1,)), ((0,), (0,))))
|
||||
with self.assertRaisesRegex(
|
||||
TypeError, "Contracting dimension sizes should have 2:4 ratio"
|
||||
):
|
||||
nm.nm_spmm(
|
||||
lhs,
|
||||
jnp.repeat(rhs, 2, axis=1),
|
||||
meta,
|
||||
dimension_numbers=(((2,), (1,)), ((0,), (0,))),
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
absltest.main(testLoader=jtu.JaxTestLoader())
|
Loading…
x
Reference in New Issue
Block a user