mirror of
https://github.com/ROCm/jax.git
synced 2025-04-16 03:46:06 +00:00
Merge pull request #16527 from skye:version
PiperOrigin-RevId: 542678766
This commit is contained in:
commit
c3e2427008
2
.github/workflows/wheel_win_x64.yml
vendored
2
.github/workflows/wheel_win_x64.yml
vendored
@ -1,8 +1,6 @@
|
||||
name: Wheel build - Windows CPU x86_64
|
||||
on:
|
||||
workflow_dispatch: # allows triggering the workflow run manually
|
||||
release:
|
||||
types: [published]
|
||||
|
||||
env:
|
||||
DISTUTILS_USE_SDK: 1
|
||||
|
@ -25,7 +25,9 @@ Remember to align the itemized text with the first line of an item within a list
|
||||
determine the output shardings.
|
||||
* If the mesh context manager is provided, None will imply that the value
|
||||
will be replicated on all devices of the mesh.
|
||||
* Executable.cost_analysis() works on Cloud TPU
|
||||
* Executable.cost_analysis() works on Cloud TPU
|
||||
* Added a warning if a non-allowlisted `jaxlib` plugin is in use.
|
||||
* Added `jax.tree_util.tree_leaves_with_path`.
|
||||
|
||||
* Bug fixes
|
||||
* Fixed incorrect wheel name in CUDA 12 releases (#16362); the correct wheel
|
||||
@ -38,9 +40,13 @@ Remember to align the itemized text with the first line of an item within a list
|
||||
|
||||
## jaxlib 0.4.13
|
||||
|
||||
* Changes
|
||||
* Added Windows CPU-only wheels to the `jaxlib` Pypi release.
|
||||
|
||||
* Bug fixes
|
||||
* `__cuda_array_interface__` was broken in previous jaxlib versions and is now
|
||||
fixed ({jax-issue}`16440`).
|
||||
* Concurrent CUDA kernel tracing is now enabled by default on NVIDIA GPUs.
|
||||
|
||||
## jax 0.4.12 (June 8, 2023)
|
||||
|
||||
|
@ -526,10 +526,10 @@ the following in your cloud TPU VM:
|
||||
pip install jax[tpu] -f https://storage.googleapis.com/jax-releases/libtpu_releases.html
|
||||
```
|
||||
|
||||
For interactive notebook users: Colab TPUs are no longer supported by JAX as of
|
||||
version 0.4. However, for an interactive TPU notebook in the cloud, you can use
|
||||
[Kaggle TPU notebooks](https://www.kaggle.com/docs/tpu), which are fully
|
||||
supported by JAX.
|
||||
For interactive notebook users: Colab TPUs no longer support JAX as of
|
||||
JAX version 0.4. However, for an interactive TPU notebook in the cloud, you can
|
||||
use [Kaggle TPU notebooks](https://www.kaggle.com/docs/tpu), which fully
|
||||
support JAX.
|
||||
|
||||
### pip installation: Apple GPUs
|
||||
|
||||
|
@ -7,10 +7,10 @@ load("@bazel_tools//tools/build_defs/repo:http.bzl", "http_archive")
|
||||
# and update the sha256 with the result.
|
||||
http_archive(
|
||||
name = "xla",
|
||||
sha256 = "f8f6efd93237c94ee3c8be65dd0702a065c3e3e7b0f732181e62d33813f1bd35",
|
||||
strip_prefix = "xla-34521d16cd91423a041be86bcb35319dfee3bedb",
|
||||
sha256 = "4ec16aff3862c5a243db956ce558d7a62eb79f5e20747b0e80802a3b0d12e419",
|
||||
strip_prefix = "xla-12de6ec958419b57be248d0acd2d9f757e71748c",
|
||||
urls = [
|
||||
"https://github.com/openxla/xla/archive/34521d16cd91423a041be86bcb35319dfee3bedb.tar.gz",
|
||||
"https://github.com/openxla/xla/archive/12de6ec958419b57be248d0acd2d9f757e71748c.tar.gz",
|
||||
],
|
||||
)
|
||||
|
||||
|
4
setup.py
4
setup.py
@ -19,13 +19,13 @@ import sys
|
||||
|
||||
from setuptools import setup, find_packages
|
||||
|
||||
_current_jaxlib_version = '0.4.12'
|
||||
_current_jaxlib_version = '0.4.13'
|
||||
# The following should be updated with each new jaxlib release.
|
||||
_latest_jaxlib_version_on_pypi = '0.4.12'
|
||||
_available_cuda11_cudnn_versions = ['86']
|
||||
_default_cuda11_cudnn_version = '86'
|
||||
_default_cuda12_cudnn_version = '89'
|
||||
_libtpu_version = '0.1.dev20230608'
|
||||
_libtpu_version = '0.1.dev20230622'
|
||||
|
||||
_dct = {}
|
||||
with open('jax/version.py', encoding='utf-8') as f:
|
||||
|
Loading…
x
Reference in New Issue
Block a user