Add new cumulative_sum function to numpy and array_api

This commit is contained in:
Meekail Zain 2024-04-16 19:57:55 +00:00
parent adbb11f9fe
commit ceeb975735
9 changed files with 110 additions and 3 deletions

View File

@ -9,8 +9,9 @@ Remember to align the itemized text with the first line of an item within a list
## jax 0.4.27 ## jax 0.4.27
* New Functionality * New Functionality
* Added {func}`jax.numpy.unstack`, following the addition of this function in * Added {func}`jax.numpy.unstack` and {func}`jax.numpy.cumulative_sum`,
the array API 2023 standard, soon to be adopted by NumPy. following their addition in the array API 2023 standard, soon to be
adopted by NumPy.
* Changes * Changes
* {func}`jax.pure_callback` and {func}`jax.experimental.io_callback` * {func}`jax.pure_callback` and {func}`jax.experimental.io_callback`

View File

@ -138,6 +138,7 @@ namespace; they are listed below.
csingle csingle
cumprod cumprod
cumsum cumsum
cumulative_sum
deg2rad deg2rad
degrees degrees
delete delete

View File

@ -26,7 +26,7 @@ import numpy as np
from jax import lax from jax import lax
from jax._src import api from jax._src import api
from jax._src import core from jax._src import core, config
from jax._src import dtypes from jax._src import dtypes
from jax._src.numpy import ufuncs from jax._src.numpy import ufuncs
from jax._src.numpy.util import ( from jax._src.numpy.util import (
@ -708,6 +708,42 @@ nancumsum = _make_cumulative_reduction(np.nancumsum, lax.cumsum,
nancumprod = _make_cumulative_reduction(np.nancumprod, lax.cumprod, nancumprod = _make_cumulative_reduction(np.nancumprod, lax.cumprod,
fill_nan=True, fill_value=1) fill_nan=True, fill_value=1)
@implements(getattr(np, 'cumulative_sum', None))
def cumulative_sum(
x: ArrayLike, /, *, axis: int | None = None,
dtype: DTypeLike | None = None,
include_initial: bool = False) -> Array:
check_arraylike("cumulative_sum", x)
x = lax_internal.asarray(x)
if x.ndim == 0:
raise ValueError(
"The input must be non-scalar to take a cumulative sum, however a "
"scalar value or scalar array was given."
)
if axis is None:
axis = 0
if x.ndim > 1:
raise ValueError(
f"The input array has rank {x.ndim}, however axis was not set to an "
"explicit value. The axis argument is only optional for one-dimensional "
"arrays.")
axis = _canonicalize_axis(axis, x.ndim)
dtypes.check_user_dtype_supported(dtype)
kind = x.dtype.kind
if (dtype is None and kind in {'i', 'u'}
and x.dtype.itemsize*8 < int(config.default_dtype_bits.value)):
dtype = dtypes.canonicalize_dtype(dtypes._default_types[kind])
x = x.astype(dtype=dtype or x.dtype)
out = cumsum(x, axis=axis)
if include_initial:
zeros_shape = list(x.shape)
zeros_shape[axis] = 1
out = lax_internal.concatenate(
[lax_internal.full(zeros_shape, 0, dtype=out.dtype), out],
dimension=axis)
return out
# Quantiles # Quantiles
@implements(np.quantile, skip_params=['out', 'overwrite_input']) @implements(np.quantile, skip_params=['out', 'overwrite_input'])
@partial(api.jit, static_argnames=('axis', 'overwrite_input', 'interpolation', @partial(api.jit, static_argnames=('axis', 'overwrite_input', 'interpolation',

View File

@ -204,6 +204,7 @@ from jax.experimental.array_api._sorting_functions import (
) )
from jax.experimental.array_api._statistical_functions import ( from jax.experimental.array_api._statistical_functions import (
cumulative_sum as cumulative_sum,
max as max, max as max,
mean as mean, mean as mean,
min as min, min as min,

View File

@ -18,6 +18,10 @@ from jax.experimental.array_api._data_type_functions import (
) )
def cumulative_sum(x, /, *, axis=None, dtype=None, include_initial=False):
"""Calculates the cumulative sum of elements in the input array x."""
return jax.numpy.cumulative_sum(x, axis=axis, dtype=dtype, include_initial=include_initial)
def max(x, /, *, axis=None, keepdims=False): def max(x, /, *, axis=None, keepdims=False):
"""Calculates the maximum value of the input array x.""" """Calculates the maximum value of the input array x."""
return jax.numpy.max(x, axis=axis, keepdims=keepdims) return jax.numpy.max(x, axis=axis, keepdims=keepdims)

View File

@ -296,6 +296,7 @@ from jax._src.numpy.reductions import (
count_nonzero as count_nonzero, count_nonzero as count_nonzero,
cumsum as cumsum, cumsum as cumsum,
cumprod as cumprod, cumprod as cumprod,
cumulative_sum as cumulative_sum,
max as max, max as max,
mean as mean, mean as mean,
median as median, median as median,

View File

@ -241,6 +241,9 @@ def cumprod(a: ArrayLike, axis: _Axis = ..., dtype: DTypeLike = ...,
cumproduct = cumprod cumproduct = cumprod
def cumsum(a: ArrayLike, axis: _Axis = ..., dtype: DTypeLike = ..., def cumsum(a: ArrayLike, axis: _Axis = ..., dtype: DTypeLike = ...,
out: None = ...) -> Array: ... out: None = ...) -> Array: ...
def cumulative_sum(x: ArrayLike, /, *, axis: int | None = ...,
dtype: DTypeLike | None = ...,
include_initial: bool = ...) -> Array: ...
def deg2rad(x: ArrayLike, /) -> Array: ... def deg2rad(x: ArrayLike, /) -> Array: ...
degrees = rad2deg degrees = rad2deg

View File

@ -68,6 +68,7 @@ MAIN_NAMESPACE = {
'copysign', 'copysign',
'cos', 'cos',
'cosh', 'cosh',
'cumulative_sum',
'divide', 'divide',
'e', 'e',
'empty', 'empty',

View File

@ -770,5 +770,64 @@ class JaxNumpyReducerTests(jtu.JaxTestCase):
self.assertAllClose(expected, actual, atol=0) self.assertAllClose(expected, actual, atol=0)
@jtu.sample_product(
[dict(shape=shape, axis=axis)
for shape in all_shapes
for axis in list(
range(-len(shape), len(shape))
) + ([None] if len(shape) == 1 else [])],
dtype=all_dtypes + [None],
out_dtype=all_dtypes,
include_initial=[False, True],
)
@jtu.ignore_warning(category=NumpyComplexWarning)
@jax.numpy_dtype_promotion('standard') # This test explicitly exercises mixed type promotion
def testCumulativeSum(self, shape, axis, dtype, out_dtype, include_initial):
rng = jtu.rand_some_zero(self.rng())
def np_mock_op(x, axis=None, dtype=None, include_initial=False):
kind = x.dtype.kind
if (dtype is None and kind in {'i', 'u'}
and x.dtype.itemsize*8 < int(config.default_dtype_bits.value)):
dtype = dtypes.canonicalize_dtype(dtypes._default_types[kind])
axis = axis or 0
x = x.astype(dtype=dtype or x.dtype)
out = jnp.cumsum(x, axis=axis)
if include_initial:
zeros_shape = list(x.shape)
zeros_shape[axis] = 1
out = jnp.concat([jnp.zeros(zeros_shape, dtype=out.dtype), out], axis=axis)
return out
# We currently "cheat" to ensure we have JAX arrays, not NumPy arrays as
# input because we rely on JAX-specific casting behavior
args_maker = lambda: [jnp.array(rng(shape, dtype))]
np_op = getattr(np, "cumulative_sum", np_mock_op)
kwargs = dict(axis=axis, dtype=out_dtype, include_initial=include_initial)
np_fun = lambda x: np_op(x, **kwargs)
jnp_fun = lambda x: jnp.cumulative_sum(x, **kwargs)
self._CheckAgainstNumpy(np_fun, jnp_fun, args_maker)
self._CompileAndCheck(jnp_fun, args_maker)
@jtu.sample_product(
shape=filter(lambda x: len(x) != 1, all_shapes), dtype=all_dtypes,
include_initial=[False, True])
def testCumulativeSumErrors(self, shape, dtype, include_initial):
rng = jtu.rand_some_zero(self.rng())
x = rng(shape, dtype)
rank = jnp.asarray(x).ndim
if rank == 0:
msg = r"The input must be non-scalar to take"
with self.assertRaisesRegex(ValueError, msg):
jnp.cumulative_sum(x, include_initial=include_initial)
elif rank > 1:
msg = r"The input array has rank \d*, however"
with self.assertRaisesRegex(ValueError, msg):
jnp.cumulative_sum(x, include_initial=include_initial)
if __name__ == "__main__": if __name__ == "__main__":
absltest.main(testLoader=jtu.JaxTestLoader()) absltest.main(testLoader=jtu.JaxTestLoader())