Remove pytest_benchmark for test-requirements.txt and move the benchmark file which was using that package to use google_benchmark.

PiperOrigin-RevId: 483736267
This commit is contained in:
Yash Katariya 2022-10-25 11:47:08 -07:00 committed by jax authors
parent 548d7f4599
commit cf6b5097d0
3 changed files with 31 additions and 44 deletions

View File

@ -13,6 +13,7 @@
# limitations under the License.
"""Microbenchmarks for JAX `api` functions."""
import enum
import functools
import operator
@ -25,6 +26,7 @@ from jax.experimental import sparse
from jax._src.api_util import shaped_abstractify # technically not an api fn
from jax._src.ad_checkpoint import checkpoint # new jax.remat implementation
from jax._src.lib import xla_client as xc
from jax.interpreters import xla
from jax.interpreters import pxla
from jax._src import array
from jax._src import sharding
@ -47,10 +49,15 @@ def required_devices(num_devices_required):
return helper2
return helper1
def swap(a, b):
return b, a
class AnEnum(enum.IntEnum):
A = 123
B = 456
@google_benchmark.register
def eager_unary_dispatch(state):
a = jax.device_put(1)
@ -555,6 +562,30 @@ def bench_shaped_abstractify(state):
_ = [shaped_abstractify(x) for x in args]
def _run_benchmark_for_xla_abstractify(arg, state):
while state:
xla.abstractify(arg)
def bench_xla_abstractify():
_abstractify_args = [
(3, 'scalar_int'),
(3.5, 'scalar_float'),
(np.int32(3), 'scalar_numpy_int32'),
(np.uint32(7), 'scalar_numpy_uint32'),
(np.random.randn(3, 4, 5, 6), 'numpy_random'),
(np.arange(100, dtype=np.float32), 'numpy_arange_100_float32'),
(AnEnum.B, 'enum'),
]
benchmarks = []
for a, name in _abstractify_args:
benchmarks.extend([
google_benchmark.register(
partial(_run_benchmark_for_xla_abstractify, a),
name=f'bench_xla_abstractify_{name}'),
])
bench_xla_abstractify()
@google_benchmark.register
@google_benchmark.option.unit(google_benchmark.kMicrosecond)
def bench_are_op_shardings_equal(state):

View File

@ -3,7 +3,6 @@ cloudpickle
colorama>=0.4.4
matplotlib
pillow>=9.1.0
pytest-benchmark
pytest-xdist
wheel
rich

View File

@ -1,43 +0,0 @@
# Copyright 2019 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import enum
import pytest
import numpy as np
from jax import numpy as jnp
from jax.interpreters import xla
class AnEnum(enum.IntEnum):
A = 123
B = 456
_abstractify_args = [
3,
3.5,
np.int32(3),
np.uint32(7),
np.random.randn(3, 4, 5, 6),
np.arange(100, dtype=np.float32),
jnp.int64(-3),
jnp.array([1, 2, 3]),
AnEnum.B,
]
@pytest.mark.parametrize("arg", _abstractify_args)
def test_abstractify(benchmark, arg):
benchmark(xla.abstractify, arg)