Run pyupgrade --py310-plus on .pyi files.

Manually fix import orders.
This commit is contained in:
Peter Hawkins 2024-06-26 15:23:57 -04:00
parent 9842bdbc6d
commit e7e1ddcf1c
2 changed files with 266 additions and 264 deletions

View File

@ -12,7 +12,8 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import abc
from typing import Any, Callable, Optional, Sequence, Union
from collections.abc import Callable, Sequence
from typing import Any, Union
import numpy as np
from jax._src.sharding import Sharding
@ -113,24 +114,24 @@ class Array(abc.ABC):
def __release_buffer__(self, view: memoryview) -> None: ...
# np.ndarray methods:
def all(self, axis: Optional[Union[int, Sequence[int]]] = None, out=None,
keepdims=None, *, where: Optional[ArrayLike] = ...) -> Array: ...
def any(self, axis: Optional[Union[int, Sequence[int]]] = None, out=None,
keepdims=None, *, where: Optional[ArrayLike] = ...) -> Array: ...
def argmax(self, axis: Optional[int] = None, out=None, keepdims=None) -> Array: ...
def argmin(self, axis: Optional[int] = None, out=None, keepdims=None) -> Array: ...
def all(self, axis: int | Sequence[int] | None = None, out=None,
keepdims=None, *, where: ArrayLike | None = ...) -> Array: ...
def any(self, axis: int | Sequence[int] | None = None, out=None,
keepdims=None, *, where: ArrayLike | None = ...) -> Array: ...
def argmax(self, axis: int | None = None, out=None, keepdims=None) -> Array: ...
def argmin(self, axis: int | None = None, out=None, keepdims=None) -> Array: ...
def argpartition(self, kth, axis=-1, kind='introselect', order=None) -> Array: ...
def argsort(self, axis: Optional[int] = -1, kind='quicksort', order=None) -> Array: ...
def argsort(self, axis: int | None = -1, kind='quicksort', order=None) -> Array: ...
def astype(self, dtype) -> Array: ...
def choose(self, choices, out=None, mode='raise') -> Array: ...
def clip(self, min=None, max=None, out=None) -> Array: ...
def compress(self, condition, axis: Optional[int] = None, out=None) -> Array: ...
def compress(self, condition, axis: int | None = None, out=None) -> Array: ...
def conj(self) -> Array: ...
def conjugate(self) -> Array: ...
def copy(self) -> Array: ...
def cumprod(self, axis: Optional[Union[int, Sequence[int]]] = None,
def cumprod(self, axis: int | Sequence[int] | None = None,
dtype=None, out=None) -> Array: ...
def cumsum(self, axis: Optional[Union[int, Sequence[int]]] = None,
def cumsum(self, axis: int | Sequence[int] | None = None,
dtype=None, out=None) -> Array: ...
def diagonal(self, offset=0, axis1: int = 0, axis2: int = 1) -> Array: ...
def dot(self, b, *, precision=None) -> Array: ...
@ -138,35 +139,35 @@ class Array(abc.ABC):
@property
def imag(self) -> Array: ...
def item(self, *args) -> Any: ...
def max(self, axis: Optional[Union[int, Sequence[int]]] = None, out=None,
def max(self, axis: int | Sequence[int] | None = None, out=None,
keepdims=None, initial=None, where=None) -> Array: ...
def mean(self, axis: Optional[Union[int, Sequence[int]]] = None, dtype=None,
def mean(self, axis: int | Sequence[int] | None = None, dtype=None,
out=None, keepdims=False, *, where=None,) -> Array: ...
def min(self, axis: Optional[Union[int, Sequence[int]]] = None, out=None,
def min(self, axis: int | Sequence[int] | None = None, out=None,
keepdims=None, initial=None, where=None) -> Array: ...
@property
def nbytes(self) -> int: ...
def nonzero(self, *, size=None, fill_value=None) -> Array: ...
def prod(self, axis: Optional[Union[int, Sequence[int]]] = None, dtype=None,
def prod(self, axis: int | Sequence[int] | None = None, dtype=None,
out=None, keepdims=None, initial=None, where=None) -> Array: ...
def ptp(self, axis: Optional[Union[int, Sequence[int]]] = None, out=None,
def ptp(self, axis: int | Sequence[int] | None = None, out=None,
keepdims=False,) -> Array: ...
def ravel(self, order='C') -> Array: ...
@property
def real(self) -> Array: ...
def repeat(self, repeats, axis: Optional[int] = None, *,
def repeat(self, repeats, axis: int | None = None, *,
total_repeat_length=None) -> Array: ...
def reshape(self, *args, order='C') -> Array: ...
def round(self, decimals=0, out=None) -> Array: ...
def searchsorted(self, v, side='left', sorter=None) -> Array: ...
def sort(self, axis: Optional[int] = -1, kind='quicksort', order=None) -> Array: ...
def squeeze(self, axis: Optional[Union[int, Sequence[int]]] = None) -> Array: ...
def std(self, axis: Optional[Union[int, Sequence[int]]] = None,
def sort(self, axis: int | None = -1, kind='quicksort', order=None) -> Array: ...
def squeeze(self, axis: int | Sequence[int] | None = None) -> Array: ...
def std(self, axis: int | Sequence[int] | None = None,
dtype=None, out=None, ddof=0, keepdims=False, *, where=None) -> Array: ...
def sum(self, axis: Optional[Union[int, Sequence[int]]] = None, dtype=None,
def sum(self, axis: int | Sequence[int] | None = None, dtype=None,
out=None, keepdims=None, initial=None, where=None) -> Array: ...
def swapaxes(self, axis1: int, axis2: int) -> Array: ...
def take(self, indices, axis: Optional[int] = None, out=None,
def take(self, indices, axis: int | None = None, out=None,
mode=None) -> Array: ...
def tobytes(self, order='C') -> bytes: ...
def tolist(self) -> list[Any]: ...
@ -177,15 +178,15 @@ class Array(abc.ABC):
def T(self) -> Array: ...
@property
def mT(self) -> Array: ...
def var(self, axis: Optional[Union[int, Sequence[int]]] = None,
def var(self, axis: int | Sequence[int] | None = None,
dtype=None, out=None, ddof=0, keepdims=False, *, where=None) -> Array: ...
def view(self, dtype=None, type=None) -> Array: ...
# Even though we don't always support the NumPy array protocol, e.g., for
# tracer types, for type checking purposes we must declare support so we
# implement the NumPy ArrayLike protocol.
def __array__(self, dtype: Optional[np.dtype] = ...,
copy: Optional[bool] = ...) -> np.ndarray: ...
def __array__(self, dtype: np.dtype | None = ...,
copy: bool | None = ...) -> np.ndarray: ...
def __dlpack__(self) -> Any: ...
# JAX extensions
@ -237,23 +238,23 @@ class _IndexUpdateHelper:
class _IndexUpdateRef:
def get(self, indices_are_sorted: bool = False, unique_indices: bool = False,
mode: Optional[str] = None, fill_value: Optional[StaticScalar] = None) -> Array: ...
mode: str | None = None, fill_value: StaticScalar | None = None) -> Array: ...
def set(self, values: Any,
indices_are_sorted: bool = False, unique_indices: bool = False,
mode: Optional[str] = None, fill_value: Optional[StaticScalar] = None) -> Array: ...
mode: str | None = None, fill_value: StaticScalar | None = None) -> Array: ...
def add(self, values: Any, indices_are_sorted: bool = False,
unique_indices: bool = False, mode: Optional[str] = None) -> Array: ...
unique_indices: bool = False, mode: str | None = None) -> Array: ...
def mul(self, values: Any, indices_are_sorted: bool = False,
unique_indices: bool = False, mode: Optional[str] = None) -> Array: ...
unique_indices: bool = False, mode: str | None = None) -> Array: ...
def multiply(self, values: Any, indices_are_sorted: bool = False,
unique_indices: bool = False, mode: Optional[str] = None) -> Array: ...
unique_indices: bool = False, mode: str | None = None) -> Array: ...
def divide(self, values: Any, indices_are_sorted: bool = False,
unique_indices: bool = False, mode: Optional[str] = None) -> Array: ...
unique_indices: bool = False, mode: str | None = None) -> Array: ...
def power(self, values: Any, indices_are_sorted: bool = False,
unique_indices: bool = False, mode: Optional[str] = None) -> Array: ...
unique_indices: bool = False, mode: str | None = None) -> Array: ...
def min(self, values: Any, indices_are_sorted: bool = False,
unique_indices: bool = False, mode: Optional[str] = None) -> Array: ...
unique_indices: bool = False, mode: str | None = None) -> Array: ...
def max(self, values: Any, indices_are_sorted: bool = False,
unique_indices: bool = False, mode: Optional[str] = None) -> Array: ...
unique_indices: bool = False, mode: str | None = None) -> Array: ...
def apply(self, func: Callable[[ArrayLike], ArrayLike], indices_are_sorted: bool = False,
unique_indices: bool = False, mode: Optional[str] = None) -> Array: ...
unique_indices: bool = False, mode: str | None = None) -> Array: ...

View File

@ -2,7 +2,8 @@ from __future__ import annotations
import builtins
from typing import Any, Callable, Literal, NamedTuple, Optional, Sequence, TypeVar, Union, overload
from collections.abc import Callable, Sequence
from typing import Any, Literal, NamedTuple, TypeVar, Union, overload
from jax._src import core as _core
from jax._src import dtypes as _dtypes
@ -33,21 +34,21 @@ def acos(x: ArrayLike, /) -> Array: ...
def acosh(x: ArrayLike, /) -> Array: ...
def add(x: ArrayLike, y: ArrayLike, /) -> Array: ...
def amax(a: ArrayLike, axis: _Axis = ..., out: None = ...,
keepdims: builtins.bool = ..., initial: Optional[ArrayLike] = ...,
where: Optional[ArrayLike] = ...) -> Array: ...
keepdims: builtins.bool = ..., initial: ArrayLike | None = ...,
where: ArrayLike | None = ...) -> Array: ...
def amin(a: ArrayLike, axis: _Axis = ..., out: None = ...,
keepdims: builtins.bool = ..., initial: Optional[ArrayLike] = ...,
where: Optional[ArrayLike] = ...) -> Array: ...
keepdims: builtins.bool = ..., initial: ArrayLike | None = ...,
where: ArrayLike | None = ...) -> Array: ...
def all(a: ArrayLike, axis: _Axis = ..., out: None = ...,
keepdims: builtins.bool = ..., *, where: Optional[ArrayLike] = ...) -> Array: ...
keepdims: builtins.bool = ..., *, where: ArrayLike | None = ...) -> Array: ...
def allclose(a: ArrayLike, b: ArrayLike, rtol: ArrayLike = ...,
atol: ArrayLike = ..., equal_nan: builtins.bool = ...) -> Array: ...
alltrue = all
def angle(z: ArrayLike, deg: builtins.bool = ...) -> Array: ...
def any(a: ArrayLike, axis: _Axis = ..., out: None = ...,
keepdims: builtins.bool = ..., *, where: Optional[ArrayLike] = ...) -> Array: ...
keepdims: builtins.bool = ..., *, where: ArrayLike | None = ...) -> Array: ...
def append(
arr: ArrayLike, values: ArrayLike, axis: Optional[int] = ...
arr: ArrayLike, values: ArrayLike, axis: int | None = ...
) -> Array: ...
def apply_along_axis(func1d: Callable, axis: int, arr: ArrayLike, *args,
**kwargs) -> Array: ...
@ -56,9 +57,9 @@ def apply_over_axes(
) -> Array: ...
def arange(
start: DimSize,
stop: Optional[DimSize] = ...,
step: Optional[DimSize] = ...,
dtype: Optional[DTypeLike] = ...,
stop: DimSize | None = ...,
step: DimSize | None = ...,
dtype: DTypeLike | None = ...,
) -> Array: ...
def arccos(x: ArrayLike, /) -> Array: ...
def arccosh(x: ArrayLike, /) -> Array: ...
@ -69,20 +70,20 @@ def arctan2(x: ArrayLike, y: ArrayLike, /) -> Array: ...
def arctanh(x: ArrayLike, /) -> Array: ...
def argmax(
a: ArrayLike,
axis: Optional[int] = ...,
axis: int | None = ...,
out: None = ...,
keepdims: Optional[builtins.bool] = ...,
keepdims: builtins.bool | None = ...,
) -> Array: ...
def argmin(
a: ArrayLike,
axis: Optional[int] = ...,
axis: int | None = ...,
out: None = ...,
keepdims: Optional[builtins.bool] = ...,
keepdims: builtins.bool | None = ...,
) -> Array: ...
def argpartition(a: ArrayLike, kth: int, axis: int = ...) -> Array: ...
def argsort(
a: ArrayLike,
axis: Optional[int] = ...,
axis: int | None = ...,
*,
stable: builtins.bool = ...,
descending: builtins.bool = ...,
@ -92,8 +93,8 @@ def argsort(
def argwhere(
a: ArrayLike,
*,
size: Optional[int] = ...,
fill_value: Optional[ArrayLike] = ...,
size: int | None = ...,
fill_value: ArrayLike | None = ...,
) -> Array: ...
around = round
def array(object: Any, dtype: DTypeLike | None = ..., copy: builtins.bool = True,
@ -105,17 +106,17 @@ def array_equiv(a1: ArrayLike, a2: ArrayLike) -> Array: ...
array_repr = _np.array_repr
def array_split(
ary: ArrayLike,
indices_or_sections: Union[int, Sequence[int], ArrayLike],
indices_or_sections: int | Sequence[int] | ArrayLike,
axis: int = ...,
) -> list[Array]: ...
array_str = _np.array_str
def asarray(
a: Any, dtype: Optional[DTypeLike] = ..., order: Optional[str] = ...,
*, copy: Optional[builtins.bool] = ...
a: Any, dtype: DTypeLike | None = ..., order: str | None = ...,
*, copy: builtins.bool | None = ...
) -> Array: ...
def asin(x: ArrayLike, /) -> Array: ...
def asinh(x: ArrayLike, /) -> Array: ...
def astype(a: ArrayLike, dtype: Optional[DTypeLike], /, *, copy: builtins.bool = ..., device: _Device | _Sharding | None = ...) -> Array: ...
def astype(a: ArrayLike, dtype: DTypeLike | None, /, *, copy: builtins.bool = ..., device: _Device | _Sharding | None = ...) -> Array: ...
def atan(x: ArrayLike, /) -> Array: ...
def atan2(x: ArrayLike, y: ArrayLike, /) -> Array: ...
def atanh(x: ArrayLike, /) -> Array: ...
@ -141,19 +142,19 @@ def atleast_3d(x: ArrayLike, /) -> Array: ...
def atleast_3d(x: ArrayLike, y: ArrayLike, /, *arys: ArrayLike) -> list[Array]: ...
@overload
def average(a: ArrayLike, axis: _Axis = ..., weights: Optional[ArrayLike] = ...,
def average(a: ArrayLike, axis: _Axis = ..., weights: ArrayLike | None = ...,
returned: Literal[False] = False, keepdims: builtins.bool = False) -> Array: ...
@overload
def average(a: ArrayLike, axis: _Axis = ..., weights: Optional[ArrayLike] = ..., *,
def average(a: ArrayLike, axis: _Axis = ..., weights: ArrayLike | None = ..., *,
returned: Literal[True], keepdims: builtins.bool = False) -> tuple[Array, Array]: ...
@overload
def average(a: ArrayLike, axis: _Axis = ..., weights: Optional[ArrayLike] = ...,
returned: builtins.bool = False, keepdims: builtins.bool = False) -> Union[Array, tuple[Array, Array]]: ...
def average(a: ArrayLike, axis: _Axis = ..., weights: ArrayLike | None = ...,
returned: builtins.bool = False, keepdims: builtins.bool = False) -> Array | tuple[Array, Array]: ...
def bartlett(M: int) -> Array: ...
bfloat16: Any
def bincount(x: ArrayLike, weights: Optional[ArrayLike] = ...,
minlength: int = ..., *, length: Optional[int] = ...) -> Array: ...
def bincount(x: ArrayLike, weights: ArrayLike | None = ...,
minlength: int = ..., *, length: int | None = ...) -> Array: ...
def bitwise_and(x: ArrayLike, y: ArrayLike, /) -> Array: ...
def bitwise_count(x: ArrayLike, /) -> Array: ...
def bitwise_invert(x: ArrayLike, /) -> Array: ...
@ -163,7 +164,7 @@ def bitwise_or(x: ArrayLike, y: ArrayLike, /) -> Array: ...
def bitwise_right_shift(x: ArrayLike, y: ArrayLike, /) -> Array: ...
def bitwise_xor(x: ArrayLike, y: ArrayLike, /) -> Array: ...
def blackman(M: int) -> Array: ...
def block(arrays: Union[ArrayLike, Sequence[ArrayLike], Sequence[Sequence[ArrayLike]]]) -> Array: ...
def block(arrays: ArrayLike | Sequence[ArrayLike] | Sequence[Sequence[ArrayLike]]) -> Array: ...
bool: Any
bool_: Any
def broadcast_arrays(*args: ArrayLike) -> list[Array]: ...
@ -172,8 +173,8 @@ def broadcast_arrays(*args: ArrayLike) -> list[Array]: ...
def broadcast_shapes(*shapes: Sequence[int]) -> tuple[int, ...]: ...
@overload
def broadcast_shapes(*shapes: Sequence[Union[int, _core.Tracer]]
) -> tuple[Union[int, _core.Tracer], ...]: ...
def broadcast_shapes(*shapes: Sequence[int | _core.Tracer]
) -> tuple[int | _core.Tracer, ...]: ...
def broadcast_to(array: ArrayLike, shape: DimSize | Shape) -> Array: ...
c_: _CClass
@ -187,53 +188,53 @@ def choose(a: ArrayLike, choices: Sequence[ArrayLike],
def clip(
x: ArrayLike | None = ...,
/,
min: Optional[ArrayLike] = ...,
max: Optional[ArrayLike] = ...,
min: ArrayLike | None = ...,
max: ArrayLike | None = ...,
a: ArrayLike | DeprecatedArg | None = ...,
a_min: ArrayLike | DeprecatedArg | None = ...,
a_max: ArrayLike | DeprecatedArg | None = ...
) -> Array: ...
def column_stack(
tup: Union[_np.ndarray, Array, Sequence[ArrayLike]]
tup: _np.ndarray | Array | Sequence[ArrayLike]
) -> Array: ...
complex128: Any
complex64: Any
complex_: Any
complexfloating = _np.complexfloating
def compress(condition: ArrayLike, a: ArrayLike, axis: Optional[int] = ...,
def compress(condition: ArrayLike, a: ArrayLike, axis: int | None = ...,
out: None = ...) -> Array: ...
def concat(arrays: Sequence[ArrayLike], /, *, axis: int | None = 0) -> Array: ...
def concatenate(
arrays: Union[_np.ndarray, Array, Sequence[ArrayLike]],
axis: Optional[int] = ...,
dtype: Optional[DTypeLike] = ...,
arrays: _np.ndarray | Array | Sequence[ArrayLike],
axis: int | None = ...,
dtype: DTypeLike | None = ...,
) -> Array: ...
def conjugate(x: ArrayLike, /) -> Array: ...
conj = conjugate
def convolve(a: ArrayLike, v: ArrayLike, mode: str = ..., *,
precision: PrecisionLike = ...,
preferred_element_type: Optional[DTypeLike] = ...) -> Array: ...
def copy(a: ArrayLike, order: Optional[str] = ...) -> Array: ...
preferred_element_type: DTypeLike | None = ...) -> Array: ...
def copy(a: ArrayLike, order: str | None = ...) -> Array: ...
def copysign(x: ArrayLike, y: ArrayLike, /) -> Array: ...
def corrcoef(x: ArrayLike, y: Optional[ArrayLike] = ..., rowvar: builtins.bool = ...) -> Array: ...
def corrcoef(x: ArrayLike, y: ArrayLike | None = ..., rowvar: builtins.bool = ...) -> Array: ...
def correlate(a: ArrayLike, v: ArrayLike, mode: str = ..., *,
precision: PrecisionLike = ...,
preferred_element_type: Optional[DTypeLike] = ...) -> Array: ...
preferred_element_type: DTypeLike | None = ...) -> Array: ...
def cos(x: ArrayLike, /) -> Array: ...
def cosh(x: ArrayLike, /) -> Array: ...
def count_nonzero(a: ArrayLike, axis: _Axis = ...,
keepdims: builtins.bool = ...) -> Array: ...
def cov(m: ArrayLike, y: Optional[ArrayLike] = ..., rowvar: builtins.bool = ...,
bias: builtins.bool = ..., ddof: Optional[int] = ...,
fweights: Optional[ArrayLike] = ...,
aweights: Optional[ArrayLike] = ...) -> Array: ...
def cov(m: ArrayLike, y: ArrayLike | None = ..., rowvar: builtins.bool = ...,
bias: builtins.bool = ..., ddof: int | None = ...,
fweights: ArrayLike | None = ...,
aweights: ArrayLike | None = ...) -> Array: ...
def cross(
a: ArrayLike,
b: ArrayLike,
axisa: int = -1,
axisb: int = -1,
axisc: int = -1,
axis: Optional[int] = ...,
axis: int | None = ...,
) -> Array: ...
csingle: Any
def cumprod(a: ArrayLike, axis: _Axis = ..., dtype: DTypeLike = ...,
@ -249,8 +250,8 @@ def deg2rad(x: ArrayLike, /) -> Array: ...
degrees = rad2deg
def delete(
arr: ArrayLike,
obj: Union[ArrayLike, slice],
axis: Optional[int] = ...,
obj: ArrayLike | slice,
axis: int | None = ...,
*,
assume_unique_indices: builtins.bool = ...,
) -> Array: ...
@ -262,33 +263,33 @@ def diagonal(
a: ArrayLike, offset: ArrayLike = ..., axis1: int = ..., axis2: int = ...
): ...
def diff(a: ArrayLike, n: int = ..., axis: int = ...,
prepend: Optional[ArrayLike] = ...,
append: Optional[ArrayLike] = ...) -> Array: ...
prepend: ArrayLike | None = ...,
append: ArrayLike | None = ...) -> Array: ...
def digitize(x: ArrayLike, bins: ArrayLike, right: builtins.bool = ...) -> Array: ...
divide = true_divide
def divmod(x: ArrayLike, y: ArrayLike, /) -> tuple[Array, Array]: ...
def dot(
a: ArrayLike, b: ArrayLike, *, precision: PrecisionLike = ...,
preferred_element_type: Optional[DTypeLike] = ...) -> Array: ...
preferred_element_type: DTypeLike | None = ...) -> Array: ...
double: Any
def dsplit(
ary: ArrayLike, indices_or_sections: Union[int, ArrayLike]
ary: ArrayLike, indices_or_sections: int | ArrayLike
) -> list[Array]: ...
def dstack(tup: Union[_np.ndarray, Array, Sequence[ArrayLike]],
dtype: Optional[DTypeLike] = ...) -> Array: ...
def dstack(tup: _np.ndarray | Array | Sequence[ArrayLike],
dtype: DTypeLike | None = ...) -> Array: ...
dtype = _np.dtype
e: float
def ediff1d(ary: ArrayLike, to_end: Optional[ArrayLike] = ...,
to_begin: Optional[ArrayLike] = ...) -> Array: ...
def ediff1d(ary: ArrayLike, to_end: ArrayLike | None = ...,
to_begin: ArrayLike | None = ...) -> Array: ...
@overload
def einsum(
subscript: str, /,
*operands: ArrayLike,
out: None = ...,
optimize: Union[str, builtins.bool, list[tuple[int, ...]]] = ...,
optimize: str | builtins.bool | list[tuple[int, ...]] = ...,
precision: PrecisionLike = ...,
preferred_element_type: Optional[DTypeLike] = ...,
preferred_element_type: DTypeLike | None = ...,
_use_xeinsum: builtins.bool = False,
_dot_general: Callable[..., Array] = ...,
) -> Array: ...
@ -297,11 +298,11 @@ def einsum(
def einsum(
arr: ArrayLike,
axes: Sequence[Any], /,
*operands: Union[ArrayLike, Sequence[Any]],
*operands: ArrayLike | Sequence[Any],
out: None = ...,
optimize: Union[str, builtins.bool, list[tuple[int, ...]]] = ...,
optimize: str | builtins.bool | list[tuple[int, ...]] = ...,
precision: PrecisionLike = ...,
preferred_element_type: Optional[DTypeLike] = ...,
preferred_element_type: DTypeLike | None = ...,
_use_xeinsum: builtins.bool = False,
_dot_general: Callable[..., Array] = ...,
) -> Array: ...
@ -310,9 +311,9 @@ def einsum(
subscripts, /,
*operands,
out: None = ...,
optimize: Union[str, builtins.bool, list[tuple[int, ...]]] = ...,
optimize: str | builtins.bool | list[tuple[int, ...]] = ...,
precision: PrecisionLike = ...,
preferred_element_type: Optional[DTypeLike] = ...,
preferred_element_type: DTypeLike | None = ...,
_use_xeinsum: builtins.bool = ...,
_dot_general: Callable[..., Array] = ...,
) -> Array: ...
@ -321,50 +322,50 @@ def einsum(
def einsum_path(
subscripts: str, /,
*operands: ArrayLike,
optimize: Union[str, builtins.bool, list[tuple[int, ...]]] = ...,
optimize: str | builtins.bool | list[tuple[int, ...]] = ...,
) -> tuple[list[tuple[int, ...]], Any]: ...
@overload
def einsum_path(
arr: ArrayLike,
axes: Sequence[Any], /,
*operands: Union[ArrayLike, Sequence[Any]],
optimize: Union[str, builtins.bool, list[tuple[int, ...]]] = ...,
*operands: ArrayLike | Sequence[Any],
optimize: str | builtins.bool | list[tuple[int, ...]] = ...,
) -> tuple[list[tuple[int, ...]], Any]: ...
@overload
def einsum_path(
subscripts, /,
*operands: ArrayLike,
optimize: Union[str, builtins.bool, list[tuple[int, ...]]] = ...,
optimize: str | builtins.bool | list[tuple[int, ...]] = ...,
) -> tuple[list[tuple[int, ...]], Any]: ...
def empty(shape: Any, dtype: Optional[DTypeLike] = ...,
device: Optional[Union[_Device, _Sharding]] = ...) -> Array: ...
def empty_like(prototype: Union[ArrayLike, DuckTypedArray],
dtype: Optional[DTypeLike] = ...,
def empty(shape: Any, dtype: DTypeLike | None = ...,
device: _Device | _Sharding | None = ...) -> Array: ...
def empty_like(prototype: ArrayLike | DuckTypedArray,
dtype: DTypeLike | None = ...,
shape: Any = ..., *,
device: Optional[Union[_Device, _Sharding]] = ...) -> Array: ...
device: _Device | _Sharding | None = ...) -> Array: ...
def equal(x: ArrayLike, y: ArrayLike, /) -> Array: ...
euler_gamma: float
def exp(x: ArrayLike, /) -> Array: ...
def exp2(x: ArrayLike, /) -> Array: ...
def expand_dims(a: ArrayLike, axis: Union[int, Sequence[int]]) -> Array: ...
def expand_dims(a: ArrayLike, axis: int | Sequence[int]) -> Array: ...
def expm1(x: ArrayLike, /) -> Array: ...
def extract(condition: ArrayLike, arr: ArrayLike, *,
size: int | None = None, fill_value: ArrayLike = 0) -> Array: ...
def eye(N: DimSize, M: Optional[DimSize] = ..., k: int | ArrayLike = ...,
dtype: Optional[DTypeLike] = ...) -> Array: ...
def eye(N: DimSize, M: DimSize | None = ..., k: int | ArrayLike = ...,
dtype: DTypeLike | None = ...) -> Array: ...
def fabs(x: ArrayLike, /) -> Array: ...
finfo = _dtypes.finfo
def fix(x: ArrayLike, out: None = ...) -> Array: ...
def flatnonzero(
a: ArrayLike,
*,
size: Optional[int] = ...,
fill_value: Union[None, ArrayLike, tuple[ArrayLike]] = ...,
size: int | None = ...,
fill_value: None | ArrayLike | tuple[ArrayLike] = ...,
) -> Array: ...
flexible = _np.flexible
def flip(
m: ArrayLike, axis: Optional[Union[int, Sequence[int]]] = ...
m: ArrayLike, axis: int | Sequence[int] | None = ...
) -> Array: ...
def fliplr(m: ArrayLike) -> Array: ...
@ -388,7 +389,7 @@ def fmod(x: ArrayLike, y: ArrayLike, /) -> Array: ...
def frexp(x: ArrayLike, /) -> tuple[Array, Array]: ...
def from_dlpack(x: Any, /, *, device: _Device | _Sharding | None = None,
copy: builtins.bool | None = None) -> Array: ...
def frombuffer(buffer: Union[bytes, Any], dtype: DTypeLike = ...,
def frombuffer(buffer: bytes | Any, dtype: DTypeLike = ...,
count: int = ..., offset: int = ...) -> Array: ...
def fromfile(*args, **kwargs): ...
def fromfunction(function: Callable[..., Array], shape: Any,
@ -398,12 +399,12 @@ def fromstring(
string: str, dtype: DTypeLike = ..., count: int = ..., *, sep: str
) -> Array: ...
def full(shape: Any, fill_value: ArrayLike,
dtype: Optional[DTypeLike] = ..., *,
device: Optional[Union[_Device, _Sharding]] = ...) -> Array: ...
def full_like(a: Union[ArrayLike, DuckTypedArray],
fill_value: ArrayLike, dtype: Optional[DTypeLike] = ...,
dtype: DTypeLike | None = ..., *,
device: _Device | _Sharding | None = ...) -> Array: ...
def full_like(a: ArrayLike | DuckTypedArray,
fill_value: ArrayLike, dtype: DTypeLike | None = ...,
shape: Any = ..., *,
device: Optional[Union[_Device, _Sharding]] = ...) -> Array: ...
device: _Device | _Sharding | None = ...) -> Array: ...
def gcd(x1: ArrayLike, x2: ArrayLike) -> Array: ...
generic = _np.generic
def geomspace(
@ -411,48 +412,48 @@ def geomspace(
stop: ArrayLike,
num: int = ...,
endpoint: builtins.bool = ...,
dtype: Optional[DTypeLike] = ...,
dtype: DTypeLike | None = ...,
axis: int = ...,
) -> Array: ...
get_printoptions = _np.get_printoptions
def gradient(f: ArrayLike, *varargs: ArrayLike,
axis: Optional[Union[int, Sequence[int]]] = ...,
edge_order: Optional[int] = ...) -> Union[Array, list[Array]]: ...
axis: int | Sequence[int] | None = ...,
edge_order: int | None = ...) -> Array | list[Array]: ...
def greater(x: ArrayLike, y: ArrayLike, /) -> Array: ...
def greater_equal(x: ArrayLike, y: ArrayLike, /) -> Array: ...
def hamming(M: int) -> Array: ...
def hanning(M: int) -> Array: ...
def heaviside(x: ArrayLike, y: ArrayLike, /) -> Array: ...
def histogram(a: ArrayLike, bins: ArrayLike = ...,
range: Optional[Sequence[ArrayLike]] = ...,
weights: Optional[ArrayLike] = ...,
density: Optional[builtins.bool] = ...) -> tuple[Array, Array]: ...
range: Sequence[ArrayLike] | None = ...,
weights: ArrayLike | None = ...,
density: builtins.bool | None = ...) -> tuple[Array, Array]: ...
def histogram2d(
x: ArrayLike,
y: ArrayLike,
bins: Union[ArrayLike, Sequence[ArrayLike]] = ...,
range: Optional[Sequence[Union[None, Array, Sequence[ArrayLike]]]] = ...,
weights: Optional[ArrayLike] = ...,
density: Optional[builtins.bool] = ...,
bins: ArrayLike | Sequence[ArrayLike] = ...,
range: Sequence[None | Array | Sequence[ArrayLike]] | None = ...,
weights: ArrayLike | None = ...,
density: builtins.bool | None = ...,
) -> tuple[Array, Array, Array]: ...
def histogram_bin_edges(a: ArrayLike, bins: ArrayLike = ...,
range: Union[None, Array, Sequence[ArrayLike]] = ...,
weights: Optional[ArrayLike] = ...) -> Array: ...
range: None | Array | Sequence[ArrayLike] = ...,
weights: ArrayLike | None = ...) -> Array: ...
def histogramdd(
sample: ArrayLike,
bins: Union[ArrayLike, Sequence[ArrayLike]] = ...,
range: Optional[Sequence[Union[None, Array, Sequence[ArrayLike]]]] = ...,
weights: Optional[ArrayLike] = ...,
density: Optional[builtins.bool] = ...,
bins: ArrayLike | Sequence[ArrayLike] = ...,
range: Sequence[None | Array | Sequence[ArrayLike]] | None = ...,
weights: ArrayLike | None = ...,
density: builtins.bool | None = ...,
) -> tuple[Array, list[Array]]: ...
def hsplit(
ary: ArrayLike, indices_or_sections: Union[int, ArrayLike]
ary: ArrayLike, indices_or_sections: int | ArrayLike
) -> list[Array]: ...
def hstack(tup: Union[_np.ndarray, Array, Sequence[ArrayLike]],
dtype: Optional[DTypeLike] = ...) -> Array: ...
def hstack(tup: _np.ndarray | Array | Sequence[ArrayLike],
dtype: DTypeLike | None = ...) -> Array: ...
def hypot(x: ArrayLike, y: ArrayLike, /) -> Array: ...
def i0(x: ArrayLike) -> Array: ...
def identity(n: DimSize, dtype: Optional[DTypeLike] = ...) -> Array: ...
def identity(n: DimSize, dtype: DTypeLike | None = ...) -> Array: ...
iinfo = _dtypes.iinfo
def imag(x: ArrayLike, /) -> Array: ...
index_exp = _np.index_exp
@ -465,15 +466,15 @@ def indices(dimensions: Sequence[int], dtype: DTypeLike = int32,
*, sparse: Literal[True]) -> tuple[Array, ...]: ...
@overload
def indices(dimensions: Sequence[int], dtype: DTypeLike = int32,
sparse: builtins.bool = False) -> Union[Array, tuple[Array, ...]]: ...
sparse: builtins.bool = False) -> Array | tuple[Array, ...]: ...
inexact = _np.inexact
inf: float
def inner(
a: ArrayLike, b: ArrayLike, *, precision: PrecisionLike = ...,
preferred_element_type: Optional[DTypeLike] = ...) -> Array: ...
def insert(arr: ArrayLike, obj: Union[ArrayLike, slice], values: ArrayLike,
axis: Optional[int] = ...) -> Array: ...
preferred_element_type: DTypeLike | None = ...) -> Array: ...
def insert(arr: ArrayLike, obj: ArrayLike | slice, values: ArrayLike,
axis: int | None = ...) -> Array: ...
int16: Any
int32: Any
int4: Any
@ -482,17 +483,17 @@ int8: Any
int_: Any
integer = _np.integer
def interp(x: ArrayLike, xp: ArrayLike, fp: ArrayLike,
left: Union[ArrayLike, str, None] = ...,
right: Union[ArrayLike, str, None] = ...,
period: Optional[ArrayLike] = ...) -> Array: ...
left: ArrayLike | str | None = ...,
right: ArrayLike | str | None = ...,
period: ArrayLike | None = ...) -> Array: ...
def intersect1d(ar1: ArrayLike, ar2: ArrayLike, assume_unique: builtins.bool = ...,
return_indices: builtins.bool = ...) -> Union[Array, tuple[Array, Array, Array]]: ...
return_indices: builtins.bool = ...) -> Array | tuple[Array, Array, Array]: ...
def invert(x: ArrayLike, /) -> Array: ...
def isclose(a: ArrayLike, b: ArrayLike, rtol: ArrayLike = ...,
atol: ArrayLike = ..., equal_nan: builtins.bool = ...) -> Array: ...
def iscomplex(m: ArrayLike) -> Array: ...
def iscomplexobj(x: Any) -> builtins.bool: ...
def isdtype(dtype: DTypeLike, kind: Union[DType, str, tuple[Union[DType, str], ...]]) -> builtins.bool: ...
def isdtype(dtype: DTypeLike, kind: DType | str | tuple[DType | str, ...]) -> builtins.bool: ...
def isfinite(x: ArrayLike, /) -> Array: ...
def isin(element: ArrayLike, test_elements: ArrayLike,
assume_unique: builtins.bool = ..., invert: builtins.bool = ...) -> Array: ...
@ -518,23 +519,23 @@ def lexsort(keys: Sequence[ArrayLike], axis: int = ...) -> Array: ...
@overload
def linspace(start: ArrayLike, stop: ArrayLike, num: int = 50,
endpoint: builtins.bool = True, retstep: Literal[False] = False,
dtype: Optional[DTypeLike] = ...,
dtype: DTypeLike | None = ...,
axis: int = 0) -> Array: ...
@overload
def linspace(start: ArrayLike, stop: ArrayLike, num: int,
endpoint: builtins.bool, retstep: Literal[True],
dtype: Optional[DTypeLike] = ...,
dtype: DTypeLike | None = ...,
axis: int = 0) -> tuple[Array, Array]: ...
@overload
def linspace(start: ArrayLike, stop: ArrayLike, num: int = 50,
endpoint: builtins.bool = True, *, retstep: Literal[True],
dtype: Optional[DTypeLike] = ...,
dtype: DTypeLike | None = ...,
axis: int = 0) -> tuple[Array, Array]: ...
@overload
def linspace(start: ArrayLike, stop: ArrayLike, num: int = 50,
endpoint: builtins.bool = True, retstep: builtins.bool = False,
dtype: Optional[DTypeLike] = ...,
axis: int = 0) -> Union[Array, tuple[Array, Array]]: ...
dtype: DTypeLike | None = ...,
axis: int = 0) -> Array | tuple[Array, Array]: ...
def load(*args: Any, **kwargs: Any) -> Array: ...
def log(x: ArrayLike, /) -> Array: ...
@ -549,20 +550,20 @@ def logical_or(x: ArrayLike, y: ArrayLike, /) -> Array: ...
def logical_xor(x: ArrayLike, y: ArrayLike, /) -> Array: ...
def logspace(start: ArrayLike, stop: ArrayLike, num: int = ...,
endpoint: builtins.bool = ..., base: ArrayLike = ...,
dtype: Optional[DTypeLike] = ..., axis: int = ...) -> Array: ...
dtype: DTypeLike | None = ..., axis: int = ...) -> Array: ...
def mask_indices(
n: int, mask_func: Callable, k: int = ...
) -> tuple[Array, ...]: ...
def matmul(
a: ArrayLike, b: ArrayLike, *, precision: PrecisionLike = ...,
preferred_element_type: Optional[DTypeLike] = ...) -> Array: ...
preferred_element_type: DTypeLike | None = ...) -> Array: ...
def matrix_transpose(x: ArrayLike, /) -> Array: ...
max = amax
def maximum(x: ArrayLike, y: ArrayLike, /) -> Array: ...
def mean(a: ArrayLike, axis: _Axis = ..., dtype: DTypeLike = ...,
out: None = ..., keepdims: builtins.bool = ..., *,
where: Optional[ArrayLike] = ...) -> Array: ...
def median(a: ArrayLike, axis: Optional[Union[int, tuple[int, ...]]] = ...,
where: ArrayLike | None = ...) -> Array: ...
def median(a: ArrayLike, axis: int | tuple[int, ...] | None = ...,
out: None = ..., overwrite_input: builtins.bool = ...,
keepdims: builtins.bool = ...) -> Array: ...
def meshgrid(*xi: ArrayLike, copy: builtins.bool = ..., sparse: builtins.bool = ...,
@ -572,100 +573,100 @@ min = amin
def minimum(x: ArrayLike, y: ArrayLike, /) -> Array: ...
def mod(x: ArrayLike, y: ArrayLike, /) -> Array: ...
def modf(x: ArrayLike, /, out=None) -> tuple[Array, Array]: ...
def moveaxis(a: ArrayLike, source: Union[int, Sequence[int]],
destination: Union[int, Sequence[int]]) -> Array: ...
def moveaxis(a: ArrayLike, source: int | Sequence[int],
destination: int | Sequence[int]) -> Array: ...
def multiply(x: ArrayLike, y: ArrayLike, /) -> Array: ...
nan: float
def nan_to_num(x: ArrayLike, copy: builtins.bool = ..., nan: ArrayLike = ...,
posinf: Optional[ArrayLike] = ...,
neginf: Optional[ArrayLike] = ...) -> Array: ...
posinf: ArrayLike | None = ...,
neginf: ArrayLike | None = ...) -> Array: ...
def nanargmax(
a: ArrayLike,
axis: Optional[int] = ...,
axis: int | None = ...,
out: None = ...,
keepdims: Optional[builtins.bool] = ...,
keepdims: builtins.bool | None = ...,
) -> Array: ...
def nanargmin(
a: ArrayLike,
axis: Optional[int] = ...,
axis: int | None = ...,
out: None = ...,
keepdims: Optional[builtins.bool] = ...,
keepdims: builtins.bool | None = ...,
) -> Array: ...
def nancumprod(a: ArrayLike, axis: _Axis = ..., dtype: DTypeLike = ...,
out: None = ...) -> Array: ...
def nancumsum(a: ArrayLike, axis: _Axis = ..., dtype: DTypeLike = ...,
out: None = ...) -> Array: ...
def nanmax(a: ArrayLike, axis: _Axis = ..., out: None = ...,
keepdims: builtins.bool = ..., initial: Optional[ArrayLike] = ...,
where: Optional[ArrayLike] = ...) -> Array: ...
keepdims: builtins.bool = ..., initial: ArrayLike | None = ...,
where: ArrayLike | None = ...) -> Array: ...
def nanmean(a: ArrayLike, axis: _Axis = ..., dtype: DTypeLike = ...,
out: None = ...,
keepdims: builtins.bool = ...,
where: Optional[ArrayLike] = ...) -> Array: ...
def nanmedian(a: ArrayLike, axis: Optional[Union[int, tuple[int, ...]]] = ...,
where: ArrayLike | None = ...) -> Array: ...
def nanmedian(a: ArrayLike, axis: int | tuple[int, ...] | None = ...,
out: None = ..., overwrite_input: builtins.bool = ...,
keepdims: builtins.bool = ...) -> Array: ...
def nanmin(a: ArrayLike, axis: _Axis = ..., out: None = ...,
keepdims: builtins.bool = ..., initial: Optional[ArrayLike] = ...,
where: Optional[ArrayLike] = ...) -> Array: ...
keepdims: builtins.bool = ..., initial: ArrayLike | None = ...,
where: ArrayLike | None = ...) -> Array: ...
def nanpercentile(a: ArrayLike, q: ArrayLike,
axis: Optional[Union[int, tuple[int, ...]]] = ...,
axis: int | tuple[int, ...] | None = ...,
out: None = ..., overwrite_input: builtins.bool = ..., method: str = ...,
keepdims: builtins.bool = ..., *, interpolation: DeprecatedArg | str = ...) -> Array: ...
def nanprod(a: ArrayLike, axis: _Axis = ..., dtype: DTypeLike = ...,
out: None = ...,
keepdims: builtins.bool = ..., initial: Optional[ArrayLike] = ...,
where: Optional[ArrayLike] = ...) -> Array: ...
def nanquantile(a: ArrayLike, q: ArrayLike, axis: Optional[Union[int, tuple[int, ...]]] = ...,
keepdims: builtins.bool = ..., initial: ArrayLike | None = ...,
where: ArrayLike | None = ...) -> Array: ...
def nanquantile(a: ArrayLike, q: ArrayLike, axis: int | tuple[int, ...] | None = ...,
out: None = ..., overwrite_input: builtins.bool = ..., method: str = ...,
keepdims: builtins.bool = ..., *, interpolation: DeprecatedArg | str = ...) -> Array: ...
def nanstd(a: ArrayLike, axis: _Axis = ..., dtype: DTypeLike = ..., out: None = ...,
ddof: int = ..., keepdims: builtins.bool = ...,
where: Optional[ArrayLike] = ...) -> Array: ...
where: ArrayLike | None = ...) -> Array: ...
def nansum(a: ArrayLike, axis: _Axis = ..., dtype: DTypeLike = ...,
out: None = ..., keepdims: builtins.bool = ...,
initial: Optional[ArrayLike] = ...,
where: Optional[ArrayLike] = ...) -> Array: ...
initial: ArrayLike | None = ...,
where: ArrayLike | None = ...) -> Array: ...
def nanvar(a: ArrayLike, axis: _Axis = ..., dtype: DTypeLike = ...,
out: None = ...,
ddof: int = 0, keepdims: builtins.bool = False,
where: Optional[ArrayLike] = ...) -> Array: ...
where: ArrayLike | None = ...) -> Array: ...
ndarray = Array
ndim = _np.ndim
def negative(x: ArrayLike, /) -> Array: ...
newaxis = ...
def nextafter(x: ArrayLike, y: ArrayLike, /) -> Array: ...
def nonzero(a: ArrayLike, *, size: Optional[int] = ...,
fill_value: Union[None, ArrayLike, tuple[ArrayLike, ...]] = ...
def nonzero(a: ArrayLike, *, size: int | None = ...,
fill_value: None | ArrayLike | tuple[ArrayLike, ...] = ...
) -> tuple[Array, ...]: ...
def not_equal(x: ArrayLike, y: ArrayLike, /) -> Array: ...
number = _np.number
object_ = _np.object_
ogrid: _Ogrid
def ones(shape: Any, dtype: Optional[DTypeLike] = ...,
device: Optional[Union[_Device, _Sharding]] = ...) -> Array: ...
def ones_like(a: Union[ArrayLike, DuckTypedArray],
dtype: Optional[DTypeLike] = ...,
def ones(shape: Any, dtype: DTypeLike | None = ...,
device: _Device | _Sharding | None = ...) -> Array: ...
def ones_like(a: ArrayLike | DuckTypedArray,
dtype: DTypeLike | None = ...,
shape: Any = ..., *,
device: Optional[Union[_Device, _Sharding]] = ...) -> Array: ...
device: _Device | _Sharding | None = ...) -> Array: ...
def outer(a: ArrayLike, b: Array, out: None = ...) -> Array: ...
def packbits(
a: ArrayLike, axis: Optional[int] = ..., bitorder: str = ...
a: ArrayLike, axis: int | None = ..., bitorder: str = ...
) -> Array: ...
PadValueLike = Union[_T, Sequence[_T], Sequence[Sequence[_T]]]
def pad(array: ArrayLike, pad_width: PadValueLike[int | Array | _np.ndarray],
mode: Union[str, Callable[..., Any]] = ..., **kwargs) -> Array: ...
mode: str | Callable[..., Any] = ..., **kwargs) -> Array: ...
def partition(a: ArrayLike, kth: int, axis: int = ...) -> Array: ...
def percentile(a: ArrayLike, q: ArrayLike,
axis: Optional[Union[int, tuple[int, ...]]] = ...,
axis: int | tuple[int, ...] | None = ...,
out: None = ..., overwrite_input: builtins.bool = ..., method: str = ...,
keepdims: builtins.bool = ..., *, interpolation: DeprecatedArg | str = ...) -> Array: ...
def permute_dims(x: ArrayLike, /, axes: tuple[int, ...]) -> Array: ...
pi: float
def piecewise(x: ArrayLike, condlist: Union[Array, Sequence[ArrayLike]],
funclist: Sequence[Union[ArrayLike, Callable[..., Array]]],
def piecewise(x: ArrayLike, condlist: Array | Sequence[ArrayLike],
funclist: Sequence[ArrayLike | Callable[..., Array]],
*args, **kw) -> Array: ...
def place(arr: ArrayLike, mask: ArrayLike, vals: ArrayLike, *,
inplace: builtins.bool = ...) -> Array: ...
@ -673,10 +674,10 @@ def poly(seq_of_zeros: ArrayLike) -> Array: ...
def polyadd(a1: ArrayLike, a2: ArrayLike) -> Array: ...
def polyder(p: ArrayLike, m: int = ...) -> Array: ...
def polydiv(u: ArrayLike, v: ArrayLike, *, trim_leading_zeros: builtins.bool = ...) -> tuple[Array, Array]: ...
def polyfit(x: ArrayLike, y: ArrayLike, deg: int, rcond: Optional[float] = ...,
full: builtins.bool = ..., w: Optional[ArrayLike] = ..., cov: builtins.bool = ...
) -> Union[Array, tuple[Array, ...]]: ...
def polyint(p: ArrayLike, m: int = ..., k: Union[int, ArrayLike, None] = ...) -> Array: ...
def polyfit(x: ArrayLike, y: ArrayLike, deg: int, rcond: float | None = ...,
full: builtins.bool = ..., w: ArrayLike | None = ..., cov: builtins.bool = ...
) -> Array | tuple[Array, ...]: ...
def polyint(p: ArrayLike, m: int = ..., k: int | ArrayLike | None = ...) -> Array: ...
def polymul(a1: ArrayLike, a2: ArrayLike, *, trim_leading_zeros: builtins.bool = ...) -> Array: ...
def polysub(a1: ArrayLike, a2: ArrayLike) -> Array: ...
def polyval(p: ArrayLike, x: ArrayLike, *, unroll: int = ...) -> Array: ...
@ -686,7 +687,7 @@ def power(x: ArrayLike, y: ArrayLike, /) -> Array: ...
printoptions = _np.printoptions
def prod(a: ArrayLike, axis: _Axis = ..., dtype: DTypeLike = ...,
out: None = ..., keepdims: builtins.bool = ...,
initial: Optional[ArrayLike] = ..., where: Optional[ArrayLike] = ...,
initial: ArrayLike | None = ..., where: ArrayLike | None = ...,
promote_integers: builtins.bool = ...) -> Array: ...
product = prod
promote_types = _np.promote_types
@ -694,7 +695,7 @@ def ptp(a: ArrayLike, axis: _Axis = ..., out: None = ...,
keepdims: builtins.bool = ...) -> Array: ...
def put(a: ArrayLike, ind: ArrayLike, v: ArrayLike,
mode: str | None = ..., *, inplace: builtins.bool = ...) -> Array: ...
def quantile(a: ArrayLike, q: ArrayLike, axis: Optional[Union[int, tuple[int, ...]]] = ...,
def quantile(a: ArrayLike, q: ArrayLike, axis: int | tuple[int, ...] | None = ...,
out: None = ..., overwrite_input: builtins.bool = ..., method: str = ...,
keepdims: builtins.bool = ..., *, interpolation: DeprecatedArg | str = ...) -> Array: ...
r_: _RClass
@ -707,19 +708,19 @@ def real(x: ArrayLike, /) -> Array: ...
def reciprocal(x: ArrayLike, /) -> Array: ...
register_jax_array_methods: Any
def remainder(x: ArrayLike, y: ArrayLike, /) -> Array: ...
def repeat(a: ArrayLike, repeats: ArrayLike, axis: Optional[int] = ..., *,
total_repeat_length: Optional[int] = ...) -> Array: ...
def repeat(a: ArrayLike, repeats: ArrayLike, axis: int | None = ..., *,
total_repeat_length: int | None = ...) -> Array: ...
def reshape(
a: ArrayLike, shape: Union[DimSize, Shape] = ...,
newshape: Union[DimSize, Shape] | None = ..., order: str = ...
a: ArrayLike, shape: DimSize | Shape = ...,
newshape: DimSize | Shape | None = ..., order: str = ...
) -> Array: ...
def resize(a: ArrayLike, new_shape: Shape) -> Array: ...
def result_type(*args: Any) -> DType: ...
def right_shift(x: ArrayLike, y: ArrayLike, /) -> Array: ...
def rint(x: ArrayLike, /) -> Array: ...
def roll(a: ArrayLike, shift: Union[ArrayLike, Sequence[int]],
axis: Optional[Union[int, Sequence[int]]] = ...) -> Array: ...
def roll(a: ArrayLike, shift: ArrayLike | Sequence[int],
axis: int | Sequence[int] | None = ...) -> Array: ...
def rollaxis(a: ArrayLike, axis: int, start: int = 0) -> Array: ...
def roots(p: ArrayLike, *, strip_zeros: builtins.bool = ...) -> Array: ...
def rot90(m: ArrayLike, k: int = ..., axes: tuple[int, int] = ...) -> Array: ...
@ -741,8 +742,8 @@ def setdiff1d(
ar2: ArrayLike,
assume_unique: builtins.bool = ...,
*,
size: Optional[int] = ...,
fill_value: Optional[ArrayLike] = ...,
size: int | None = ...,
fill_value: ArrayLike | None = ...,
) -> Array: ...
def setxor1d(ar1: ArrayLike, ar2: ArrayLike, assume_unique: builtins.bool = ...) -> Array: ...
shape = _np.shape
@ -757,7 +758,7 @@ size = _np.size
sometrue = any
def sort(
a: ArrayLike,
axis: Optional[int] = ...,
axis: int | None = ...,
*,
stable: builtins.bool = ...,
descending: builtins.bool = ...,
@ -767,24 +768,24 @@ def sort(
def sort_complex(a: ArrayLike) -> Array: ...
def split(
ary: ArrayLike,
indices_or_sections: Union[int, Sequence[int], ArrayLike],
indices_or_sections: int | Sequence[int] | ArrayLike,
axis: int = ...,
) -> list[Array]: ...
def sqrt(x: ArrayLike, /) -> Array: ...
def square(x: ArrayLike, /) -> Array: ...
def squeeze(
a: ArrayLike, axis: Optional[Union[int, Sequence[int]]] = ...
a: ArrayLike, axis: int | Sequence[int] | None = ...
) -> Array: ...
def stack(
arrays: Union[_np.ndarray, Array, Sequence[ArrayLike]],
arrays: _np.ndarray | Array | Sequence[ArrayLike],
axis: int = ...,
out: None = ...,
dtype: Optional[DTypeLike] = ...,
dtype: DTypeLike | None = ...,
) -> Array: ...
def std(a: ArrayLike, axis: _Axis = ..., dtype: DTypeLike = ...,
out: None = ..., ddof: int = ..., keepdims: builtins.bool = ..., *,
where: Optional[ArrayLike] = ..., correction: int | float | None = ...) -> Array: ...
where: ArrayLike | None = ..., correction: int | float | None = ...) -> Array: ...
def subtract(x: ArrayLike, y: ArrayLike, /) -> Array: ...
def sum(
a: ArrayLike,
@ -792,53 +793,53 @@ def sum(
dtype: DTypeLike = ...,
out: None = ...,
keepdims: builtins.bool = ...,
initial: Optional[ArrayLike] = ...,
where: Optional[ArrayLike] = ...,
initial: ArrayLike | None = ...,
where: ArrayLike | None = ...,
promote_integers: builtins.bool = ...,
) -> Array: ...
def swapaxes(a: ArrayLike, axis1: int, axis2: int) -> Array: ...
def take(
a: ArrayLike,
indices: ArrayLike,
axis: Optional[int] = ...,
axis: int | None = ...,
out: None = ...,
mode: Optional[str] = ...,
mode: str | None = ...,
unique_indices: builtins.bool = ...,
indices_are_sorted: builtins.bool = ...,
fill_value: Optional[StaticScalar] = ...,
fill_value: StaticScalar | None = ...,
) -> Array: ...
def take_along_axis(
arr: ArrayLike,
indices: ArrayLike,
axis: Optional[int],
mode: Optional[Union[str, GatherScatterMode]] = ...,
fill_value: Optional[StaticScalar] = None,
axis: int | None,
mode: str | GatherScatterMode | None = ...,
fill_value: StaticScalar | None = None,
) -> Array: ...
def tan(x: ArrayLike, /) -> Array: ...
def tanh(x: ArrayLike, /) -> Array: ...
def tensordot(a: ArrayLike, b: ArrayLike,
axes: Union[int, Sequence[int], Sequence[Sequence[int]]] = ...,
axes: int | Sequence[int] | Sequence[Sequence[int]] = ...,
*, precision: PrecisionLike = ...,
preferred_element_type: Optional[DTypeLike] = ...) -> Array: ...
def tile(A: ArrayLike, reps: Union[DimSize, Sequence[DimSize]]) -> Array: ...
preferred_element_type: DTypeLike | None = ...) -> Array: ...
def tile(A: ArrayLike, reps: DimSize | Sequence[DimSize]) -> Array: ...
def trace(a: ArrayLike, offset: int | ArrayLike = ..., axis1: int = ..., axis2: int = ...,
dtype: Optional[DTypeLike] = ..., out: None = ...) -> Array: ...
def transpose(a: ArrayLike, axes: Optional[Sequence[int]] = ...) -> Array: ...
dtype: DTypeLike | None = ..., out: None = ...) -> Array: ...
def transpose(a: ArrayLike, axes: Sequence[int] | None = ...) -> Array: ...
def trapezoid(y: ArrayLike, x: ArrayLike | None = None, dx: ArrayLike = ...,
axis: int = ...) -> Array: ...
def tri(
N: int, M: Optional[int] = ..., k: int = ..., dtype: DTypeLike = ...
N: int, M: int | None = ..., k: int = ..., dtype: DTypeLike = ...
) -> Array: ...
def tril(m: ArrayLike, k: int = ...) -> Array: ...
def tril_indices(
n: int, k: int = ..., m: Optional[int] = ...
n: int, k: int = ..., m: int | None = ...
) -> tuple[Array, Array]: ...
def tril_indices_from(arr: ArrayLike, k: int = ...) -> tuple[Array, Array]: ...
def fill_diagonal(a: ArrayLike, val: ArrayLike, wrap: builtins.bool = ..., *, inplace: builtins.bool = ...) -> Array: ...
def trim_zeros(filt: ArrayLike, trim: str = ...) -> Array: ...
def triu(m: ArrayLike, k: int = ...) -> Array: ...
def triu_indices(
n: int, k: int = ..., m: Optional[int] = ...
n: int, k: int = ..., m: int | None = ...
) -> tuple[Array, Array]: ...
def triu_indices_from(arr: ArrayLike, k: int = ...) -> tuple[Array, Array]: ...
def true_divide(x: ArrayLike, y: ArrayLike, /) -> Array: ...
@ -853,8 +854,8 @@ def union1d(
ar1: ArrayLike,
ar2: ArrayLike,
*,
size: Optional[int] = ...,
fill_value: Optional[ArrayLike] = ...,
size: int | None = ...,
fill_value: ArrayLike | None = ...,
) -> Array: ...
class _UniqueAllResult(NamedTuple):
values: Array
@ -868,71 +869,71 @@ class _UniqueInverseResult(NamedTuple):
values: Array
inverse_indices: Array
def unique(ar: ArrayLike, return_index: builtins.bool = ..., return_inverse: builtins.bool = ...,
return_counts: builtins.bool = ..., axis: Optional[int] = ...,
*, equal_nan: builtins.bool = ..., size: Optional[int] = ...,
fill_value: Optional[ArrayLike] = ...
return_counts: builtins.bool = ..., axis: int | None = ...,
*, equal_nan: builtins.bool = ..., size: int | None = ...,
fill_value: ArrayLike | None = ...
): ...
def unique_all(x: ArrayLike, /, *, size: Optional[int] = ...,
fill_value: Optional[ArrayLike] = ...) -> _UniqueAllResult: ...
def unique_counts(x: ArrayLike, /, *, size: Optional[int] = ...,
fill_value: Optional[ArrayLike] = ...) -> _UniqueCountsResult: ...
def unique_inverse(x: ArrayLike, /, *, size: Optional[int] = ...,
fill_value: Optional[ArrayLike] = ...) -> _UniqueInverseResult: ...
def unique_values(x: ArrayLike, /, *, size: Optional[int] = ...,
fill_value: Optional[ArrayLike] = ...) -> Array: ...
def unique_all(x: ArrayLike, /, *, size: int | None = ...,
fill_value: ArrayLike | None = ...) -> _UniqueAllResult: ...
def unique_counts(x: ArrayLike, /, *, size: int | None = ...,
fill_value: ArrayLike | None = ...) -> _UniqueCountsResult: ...
def unique_inverse(x: ArrayLike, /, *, size: int | None = ...,
fill_value: ArrayLike | None = ...) -> _UniqueInverseResult: ...
def unique_values(x: ArrayLike, /, *, size: int | None = ...,
fill_value: ArrayLike | None = ...) -> Array: ...
def unpackbits(
a: ArrayLike,
axis: Optional[int] = ...,
count: Optional[ArrayLike] = ...,
axis: int | None = ...,
count: ArrayLike | None = ...,
bitorder: str = ...,
) -> Array: ...
def unravel_index(indices: ArrayLike, shape: Shape) -> tuple[Array, ...]: ...
unsignedinteger = _np.unsignedinteger
def unstack(x: ArrayLike , /, *, axis: int = ...) -> tuple[Array, ...]: ...
def unwrap(p: ArrayLike, discont: Optional[ArrayLike] = ...,
def unwrap(p: ArrayLike, discont: ArrayLike | None = ...,
axis: int = ..., period: ArrayLike = ...) -> Array: ...
def vander(
x: ArrayLike, N: Optional[int] = ..., increasing: builtins.bool = ...
x: ArrayLike, N: int | None = ..., increasing: builtins.bool = ...
) -> Array: ...
def var(a: ArrayLike, axis: _Axis = ..., dtype: DTypeLike = ...,
out: None = ..., ddof: int = ..., keepdims: builtins.bool = ..., *,
where: Optional[ArrayLike] = ..., correction: int | float | None = ...) -> Array: ...
where: ArrayLike | None = ..., correction: int | float | None = ...) -> Array: ...
def vdot(
a: ArrayLike, b: ArrayLike, *, precision: PrecisionLike = ...,
preferred_element_type: Optional[DTypeLike] = ...) -> Array: ...
preferred_element_type: DTypeLike | None = ...) -> Array: ...
def vecdot(x1: ArrayLike, x2: ArrayLike, /, *, axis: int = ...,
precision: PrecisionLike = ...,
preferred_element_type: Optional[DTypeLike] = ...) -> Array: ...
preferred_element_type: DTypeLike | None = ...) -> Array: ...
def vsplit(
ary: ArrayLike, indices_or_sections: Union[int, ArrayLike]
ary: ArrayLike, indices_or_sections: int | ArrayLike
) -> list[Array]: ...
def vstack(tup: Union[_np.ndarray, Array, Sequence[ArrayLike]],
dtype: Optional[DTypeLike] = ...) -> Array: ...
def vstack(tup: _np.ndarray | Array | Sequence[ArrayLike],
dtype: DTypeLike | None = ...) -> Array: ...
@overload
def where(condition: ArrayLike, x: Literal[None] = ..., y: Literal[None] = ...,
/, *, size: Optional[int] = ...,
fill_value: Union[None, ArrayLike, tuple[ArrayLike, ...]] = ...
/, *, size: int | None = ...,
fill_value: None | ArrayLike | tuple[ArrayLike, ...] = ...
) -> tuple[Array, ...]: ...
@overload
def where(condition: ArrayLike, x: ArrayLike, y: ArrayLike, /, *,
size: Optional[int] = ...,
fill_value: Union[None, ArrayLike, tuple[ArrayLike, ...]] = ...
size: int | None = ...,
fill_value: None | ArrayLike | tuple[ArrayLike, ...] = ...
) -> Array: ...
@overload
def where(condition: ArrayLike, x: Optional[ArrayLike] = ...,
y: Optional[ArrayLike] = ..., /, *, size: Optional[int] = ...,
fill_value: Union[None, ArrayLike, tuple[ArrayLike, ...]] = ...
) -> Union[Array, tuple[Array, ...]]: ...
def where(condition: ArrayLike, x: ArrayLike | None = ...,
y: ArrayLike | None = ..., /, *, size: int | None = ...,
fill_value: None | ArrayLike | tuple[ArrayLike, ...] = ...
) -> Array | tuple[Array, ...]: ...
def zeros(shape: Any, dtype: Optional[DTypeLike] = ...,
device: Optional[Union[_Device, _Sharding]] = ...) -> Array: ...
def zeros_like(a: Union[ArrayLike, DuckTypedArray],
dtype: Optional[DTypeLike] = ...,
def zeros(shape: Any, dtype: DTypeLike | None = ...,
device: _Device | _Sharding | None = ...) -> Array: ...
def zeros_like(a: ArrayLike | DuckTypedArray,
dtype: DTypeLike | None = ...,
shape: Any = ..., *,
device: Optional[Union[_Device, _Sharding]] = ...) -> Array: ...
device: _Device | _Sharding | None = ...) -> Array: ...
def vectorize(pyfunc, *, excluded = ..., signature = ...) -> Callable: ...