130 Commits

Author SHA1 Message Date
Jake VanderPlas
5a3733788c benchmarks: add sparse.BCOO todense/fromdense/matvec benchmarks
PiperOrigin-RevId: 405519824
2021-10-25 16:44:36 -07:00
Yash Katariya
bfbdfa87e7 Add a warmup loop to pmap_simple_8_devices_100_args benchmark so as to not measure the compile time.
PiperOrigin-RevId: 401402336
2021-10-06 19:51:35 -07:00
Peter Hawkins
256e7220ff [JAX] Fix pylint errors.
* trailing-whitespace
* dangerous-default-value. None of these appear to be bugs in practice, but the potential for accidentally mutating the default value is there, and the cost of avoiding the problem is small.
* invalid-envvar-default. Pass strings as getenv() defaults.
* unnecessary-semicolon. Use tuples instead for this one-liner.
* invalid-hash-returned. Raise an exception rather than asserting false.
* pointless-string-statement. Use comments instead.
* unreachable. Use @unittest.skip() decorator rather than raising as first line in test.
* logging-not-lazy. Make the logging lazy.
* bad-format-string-type. Use f-string instead.
* subprocess-run-check. Pass check=...

PiperOrigin-RevId: 400858477
2021-10-04 17:54:46 -07:00
Peter Hawkins
6a1b626564 Remove jax.api.
Functions exported as jax.api were aliases for names in jax.*. Use the jax.* names instead.
2021-09-16 16:29:06 -04:00
Jean-Baptiste Lespiau
6cb8737c1a Add a benchmark with many arguments.
PiperOrigin-RevId: 393216026
2021-08-26 15:06:09 -07:00
Jean-Baptiste Lespiau
afdd195e42 Internal only.
PiperOrigin-RevId: 388562206
2021-08-03 15:49:17 -07:00
Qiao Zhang
850bd66242 [JAX] Prune unused inputs in jit.
- Python part based on: https://github.com/google/jax/pull/6567
- Added cpp_jit path to handle pruned args

PiperOrigin-RevId: 371743277
2021-05-03 11:41:29 -07:00
Tom Hennigan
9d56552517 Remove special casing on npy_value when indexing sharded arrays.
Before:

```
GPU
sda_index_2                           2912972 ns      2778716 ns          256

TPU
sda_index_1                            769968 ns       751700 ns          921
sda_index_2                           1510841 ns      1489716 ns          465
sda_index_8                           6102259 ns      6027655 ns          117
```

After:

```
GPU
sda_index_2                             28095 ns        27983 ns        25463

TPU
sda_index_1                             10302 ns        10279 ns        67884
sda_index_2                             20010 ns        19947 ns        34628
sda_index_8                             78492 ns        78306 ns         8934
```

PiperOrigin-RevId: 368380864
2021-04-14 01:17:10 -07:00
Matthew Johnson
9802f3378e add simple single-primitive eager benchmarks 2021-03-18 21:46:46 -07:00
Peter Hawkins
cdd36b1113 Improve API benchmarks.
Add benchmarks for different dispatch arg arities.

Add more blocking before and after benchmark loops that don't otherwise block.
2021-03-03 20:50:45 -05:00
Tom Hennigan
7b94c44af9 Sort imports.
PiperOrigin-RevId: 359532656
2021-02-25 08:52:09 -08:00
Peter Hawkins
160dfd343a Revert import path changes to examples/ and benchmarks/
PiperOrigin-RevId: 352911869
2021-01-20 17:35:55 -08:00
Peter Hawkins
929a684a39 Small cleanups to dependency structure.
PiperOrigin-RevId: 352853244
2021-01-20 12:43:28 -08:00
Peter Hawkins
3ac809ede3 [JAX] Move jax.util to jax._src_util.
PiperOrigin-RevId: 351234602
2021-01-11 14:21:07 -08:00
Jake Vanderplas
6a89f60683
fix benchmark sums (#4329) 2020-09-18 09:24:00 -07:00
Jean-Baptiste Lespiau
e95d5701e3
Add benchmarks for specifically the dispatch time. (#4128)
The goal is to distinguish the time it takes for `jitted_f` to return, and the time it takes to return and wait for the result.
We also add one to distinguish the time it takes to call the function with the argument transfer or without it.

e.g.

name                                   time/op
jit_trivial_dispatch                   28.9µs ± 2%
jit_trivial                            31.5µs ± 5%
jit_simple_dispatch                    60.7µs ± 4%
jit_simple                              129µs ±24%
jit_simple_many_args_disptch            390µs ±19%
jit_simple_many_args                    388µs ±16%
jit_dispatch_without_transfer           379µs ± 6%
jit_dispatch_with_transfer              450µs ± 5%
2020-08-27 17:02:13 +03:00
Jake Vanderplas
29aa9bfc8f
Cleanup: avoid jnp.prod & np.prod on array shapes (#4086) 2020-08-18 10:17:38 -07:00
Jake Vanderplas
a7c2cdea64
Cleanup: convert uses of import numpy as onp in library code (#3754) 2020-07-14 13:05:31 -07:00
Chris Jones
c1aeb8b3fe
Add simple JAX API microbenchmarks. (#3679) 2020-07-09 10:02:23 -07:00
Jake Vanderplas
6aa8f2461c
Fix remaining flakes and use exclude within setup.cfg (#3371) 2020-06-08 22:58:03 -07:00
Peter Hawkins
b1bc841ae5
Replace np -> jnp, onp -> np in more places. (#2973)
* Replace np -> jnp, onp -> np in more places.

Context: #2370

* Fix typo in random_test.py
2020-05-05 16:40:41 -04:00
Skye Wanderman-Milne
4b0334338e
Add pmap_shard_device_array_benchmark. (#2864)
Also renames pmap_shard_args_benchmark to pmap_shard_sharded_device_array_benchmark.
2020-04-27 17:21:05 -07:00
Skye Wanderman-Milne
8c2901cf4a
Add --export_dir and --baseline_dir flags to benchmark.py. (#2677)
`--export_dir` allows saving benchmark results to CSV files, and
`--baseline_dir` allows comparing results to a baseline exported via
`--export_dir`.
2020-04-13 10:07:05 -07:00
Skye Wanderman-Milne
3fe8bd027c
Adjust pmap_bechmark.py values to be more realistic. (#2622) 2020-04-06 16:38:34 -07:00
Skye Wanderman-Milne
c28c46e191
Add ShardedDeviceArray indexing benchmark. (#2549)
Example output:
```
---------Benchmark summary for ShardedDeviceArray_indexing---------
indices_fn              mean     %std    relative
------------------  --------  -------  ----------
integer_indices      0.16901  8.52522       1
integer_2D_indices  18.4918   0           109.412
```
2020-03-31 15:52:41 -07:00
George Necula
fd52fbf411 Fix import in benchmarks
This works on my machine as 'python benchmarks/pmap_benchmark.py'. It also
follows the code in examples.

This will need a copybara rule to change the import to 'from jax.benchmarks import benchmark'
2020-03-31 11:48:08 +03:00
Skye Wanderman-Milne
24bbd2bc1d
Fix pmap_benchmark.py import (#2524) 2020-03-27 10:50:57 -07:00
George Necula
428377afb3
Added type annotations and removed unused imports (#2472)
* Added type annotations and removed unused imports

* Adjusted type hints for pytype
2020-03-21 13:54:30 +01:00
George Necula
cd7ab0a9e0
Changed to pmap_benchmark to make it runnable in Google (#2448) 2020-03-19 06:56:59 +01:00
Skye Wanderman-Milne
75077a1441
Add pmap_benchmark.py (#2409)
Example output:

```
$ TARGET_TOTAL_SECS=2 CUDA_VISIBLE_DEVICES= XLA_FLAGS=--xla_force_host_platform_device_count=500 python3 benchmarks/pmap_benchmark.py
2020-03-12 15:46:35.903121: E external/org_tensorflow/tensorflow/stream_executor/cuda/cuda_driver.cc:313] failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected
/usr/local/google/home/skyewm/jax/jax/lib/xla_bridge.py:122: UserWarning: No GPU/TPU found, falling back to CPU.
  warnings.warn('No GPU/TPU found, falling back to CPU.')
---------Benchmark results for pmap_shard_args_nargs=10_nshards=4---------
mean=0.034490 std=0.002890 %std=8.378140 total=2.000426
#iters=58 #warmup=1

---------Benchmark results for pmap_shard_args_nargs=100_nshards=4---------
mean=0.091495 std=0.005935 %std=6.486871 total=2.012888
#iters=22 #warmup=1

---------Benchmark results for pmap_shard_args_nargs=101_nshards=4---------
mean=0.113549 std=0.009080 %std=7.996712 total=2.043878
#iters=18 #warmup=1

---------Benchmark results for pmap_shard_args_nargs=500_nshards=4---------
mean=0.356868 std=0.007960 %std=2.230518 total=2.141210
#iters=6 #warmup=1

---------Benchmark results for pmap_shard_args_nargs=10_nshards=2---------
mean=0.022288 std=0.002946 %std=13.219607 total=2.005951
#iters=90 #warmup=1

---------Benchmark results for pmap_shard_args_nargs=10_nshards=4---------
mean=0.035210 std=0.002024 %std=5.747389 total=2.006975
#iters=57 #warmup=1

---------Benchmark results for pmap_shard_args_nargs=10_nshards=8---------
mean=0.048641 std=0.001578 %std=3.243398 total=2.042912
#iters=42 #warmup=1

---------Benchmark results for pmap_shard_args_nargs=10_nshards=100---------
mean=0.257487 std=0.007190 %std=2.792452 total=2.059900
#iters=8 #warmup=1

---------Benchmark results for pmap_shard_args_nargs=10_nshards=500---------
mean=1.696294 std=0.005097 %std=0.300473 total=3.392588
#iters=2 #warmup=1

---------Benchmark summary for pmap_shard_args---------
  nargs    nshards       mean       %std    relative
-------  ---------  ---------  ---------  ----------
     10          4  0.0344901   8.37814     1
    100          4  0.0914949   6.48687     2.65279
    101          4  0.113549    7.99671     3.29221
    500          4  0.356868    2.23052    10.347
     10          2  0.0222883  13.2196      0.646224
     10          4  0.0352101   5.74739     1.02088
     10          8  0.0486408   3.2434      1.41028
     10        100  0.257487    2.79245     7.46555
     10        500  1.69629     0.300473   49.182

---------Benchmark results for pmap_shard_outputs_nouts=10_nshards=4---------
mean=0.061780 std=0.004737 %std=7.668032 total=2.038743
#iters=33 #warmup=1

---------Benchmark results for pmap_shard_outputs_nouts=100_nshards=4---------
mean=0.123264 std=0.005980 %std=4.851385 total=2.095494
#iters=17 #warmup=1

---------Benchmark results for pmap_shard_outputs_nouts=500_nshards=4---------
mean=0.471524 std=0.024051 %std=5.100792 total=2.357622
#iters=5 #warmup=1

---------Benchmark results for pmap_shard_outputs_nouts=10_nshards=2---------
mean=0.041546 std=0.004446 %std=10.700256 total=2.035745
#iters=49 #warmup=1

---------Benchmark results for pmap_shard_outputs_nouts=10_nshards=4---------
mean=0.063768 std=0.002756 %std=4.322039 total=2.040561
#iters=32 #warmup=1

---------Benchmark results for pmap_shard_outputs_nouts=10_nshards=8---------
mean=0.087285 std=0.005343 %std=6.121320 total=2.007556
#iters=23 #warmup=1

---------Benchmark results for pmap_shard_outputs_nouts=10_nshards=100---------
mean=0.623440 std=0.004038 %std=0.647725 total=2.493759
#iters=4 #warmup=1

---------Benchmark results for pmap_shard_outputs_nouts=10_nshards=500---------
mean=4.096676 std=0.000000 %std=0.000000 total=4.096676
#iters=1 #warmup=1

---------Benchmark summary for pmap_shard_outputs---------
  nouts    nshards       mean       %std    relative
-------  ---------  ---------  ---------  ----------
     10          4  0.0617801   7.66803     1
    100          4  0.123264    4.85139     1.99521
    500          4  0.471524    5.10079     7.6323
     10          2  0.0415458  10.7003      0.672479
     10          4  0.0637675   4.32204     1.03217
     10          8  0.087285    6.12132     1.41283
     10        100  0.62344     0.647725   10.0913
     10        500  4.09668     0          66.3106
```
2020-03-17 14:31:25 -07:00