171 Commits

Author SHA1 Message Date
Matthew Johnson
ff96de935b
add dummy eval context (#3932) 2020-07-31 22:20:58 -07:00
Roy Frostig
cd64d2eed5 typecheck scan and cond params 2020-07-31 15:58:13 -07:00
Matthew Johnson
4236eb2b59
omnistaging, under a flag and disabled by default (#3370)
This change, when enabled, stages out all primitive calls in the dynamic
scope of a jitted, pmapped, or control flow function, rather than only
staging out based on data dependence. One improvement is that jitted
functions can consume less memory, by avoiding instantiating large
constants at trace time, and cause less memory fragmentation as well. It
also simplifies several internals.

See https://github.com/google/jax/pull/3370 fo more information.
2020-07-30 12:59:36 -07:00
Matthew Johnson
c9d8acd2e9
put core trace state in a threading.local class (#3869)
this is a refinement of the fix in #3845, so that we no longer need
TraceState.set_state (and so that #3370 is easier to adapt)
2020-07-26 22:38:14 -07:00
Peter Hawkins
53a4538129
Fix source_info crash in Jaxpr printing (#3849) 2020-07-24 11:52:32 -04:00
Matthew Johnson
cc9528d97d
fix thread locality bug in custom_derivatives (#3845)
* fix thread locality bug in custom_derivatives

fixes #3843
2020-07-23 19:49:04 -07:00
Jake Vanderplas
a7c2cdea64
Cleanup: convert uses of import numpy as onp in library code (#3754) 2020-07-14 13:05:31 -07:00
Matthew Johnson
49cfe2687c
improve concreteness error message for nn.one_hot (#3656)
* improve nn.one_hot and jax.numpy.arange errors

fixes #3654

* deflake

* debug
2020-07-03 20:54:25 -07:00
Roy Frostig
101581d872 add source info to jaxpr typechecking messages 2020-06-29 14:06:31 -07:00
Roy Frostig
c7e97b79f4 limit jaxpr context in typechecker error messages 2020-06-26 15:31:04 -07:00
Roy Frostig
c54acbf903 introduce custom typecheck rules, implement them for cond and scan 2020-06-26 15:31:04 -07:00
Roy Frostig
6b3b42d9c5 raise a custom error in jaxpr checker 2020-06-26 15:31:04 -07:00
Matthew Johnson
a45e28377f
add back a full_lower, dropped in #3491 (#3530) 2020-06-23 12:08:12 -07:00
Matthew Johnson
75278309aa
refactor call primitives, simpler param processing (#3491) 2020-06-23 09:39:45 -07:00
Peter Hawkins
3290e16a9a
Attach source info to Jaxpr equations. (#3421)
* Attach source info to Jaxpr equations.

Example:
```
In [1]: import jax, jax.numpy as jnp
In [2]: def f(x, y):
   ...:    z = jax.numpy.cos(x)
   ...:    z = z * jax.numpy.tanh(y)
   ...:    return z + 2
   ...:

In [3]: jax.make_jaxpr(jax.value_and_grad(f))(7., 9.)
Out[3]:
{ lambda  ; a b.
  let c = cos a  [<ipython-input-2-5d59f71cb65d>:2 (f)]
      d = tanh b  [<ipython-input-2-5d59f71cb65d>:3 (f)]
      e = mul c d  [<ipython-input-2-5d59f71cb65d>:3 (f)]
      f = add e 2.0  [<ipython-input-2-5d59f71cb65d>:4 (f)]
      g = mul 1.0 d  [<ipython-input-2-5d59f71cb65d>:3 (f)]
      h = neg g  [<ipython-input-2-5d59f71cb65d>:2 (f)]
      i = sin a  [<ipython-input-2-5d59f71cb65d>:2 (f)]
      j = mul h i  [<ipython-input-2-5d59f71cb65d>:2 (f)]
  in (f, j) }

In [7]: print(jax.xla_computation(jax.value_and_grad(f))(7., 9.).as_hlo_module().to_string())
HloModule xla_computation_f__4.15

ENTRY %xla_computation_f__4.15 (parameter.1: f32[], parameter.2: f32[]) -> (f32[], f32[]) {
  %constant.3 = pred[] constant(false)
  %parameter.1 = f32[] parameter(0)
  %cosine.4 = f32[] cosine(f32[] %parameter.1), metadata={op_type="cos" op_name="xla_computation(f)/cos" source_file="<ipython-input-2-5d59f71cb65d>" source_line=2}
  %parameter.2 = f32[] parameter(1)
  %tanh.5 = f32[] tanh(f32[] %parameter.2), metadata={op_type="tanh" op_name="xla_computation(f)/tanh" source_file="<ipython-input-2-5d59f71cb65d>" source_line=3}
  %multiply.6 = f32[] multiply(f32[] %cosine.4, f32[] %tanh.5), metadata={op_type="mul" op_name="xla_computation(f)/mul" source_file="<ipython-input-2-5d59f71cb65d>" source_line=3}
  %constant.7 = f32[] constant(2), metadata={op_type="add" op_name="xla_computation(f)/add" source_file="<ipython-input-2-5d59f71cb65d>" source_line=4}
  %add.8 = f32[] add(f32[] %multiply.6, f32[] %constant.7), metadata={op_type="add" op_name="xla_computation(f)/add" source_file="<ipython-input-2-5d59f71cb65d>" source_line=4}
  %constant.9 = f32[] constant(1), metadata={op_type="mul" op_name="xla_computation(f)/mul" source_file="<ipython-input-2-5d59f71cb65d>" source_line=3}
  %multiply.10 = f32[] multiply(f32[] %constant.9, f32[] %tanh.5), metadata={op_type="mul" op_name="xla_computation(f)/mul" source_file="<ipython-input-2-5d59f71cb65d>" source_line=3}
  %negate.11 = f32[] negate(f32[] %multiply.10), metadata={op_type="neg" op_name="xla_computation(f)/neg" source_file="<ipython-input-2-5d59f71cb65d>" source_line=2}
  %sine.12 = f32[] sine(f32[] %parameter.1), metadata={op_type="sin" op_name="xla_computation(f)/sin" source_file="<ipython-input-2-5d59f71cb65d>" source_line=2}
  %multiply.13 = f32[] multiply(f32[] %negate.11, f32[] %sine.12), metadata={op_type="mul" op_name="xla_computation(f)/mul" source_file="<ipython-input-2-5d59f71cb65d>" source_line=2}
  ROOT %tuple.14 = (f32[], f32[]) tuple(f32[] %add.8, f32[] %multiply.13)
}
```

Co-authored-by: Matthew Johnson <mattjj@google.com>
2020-06-17 16:35:36 -07:00
Roy Frostig
a70ba920fe jaxpr pretty-print: wrap equation RHS when the LHS is long 2020-06-16 13:49:13 -07:00
Roy Frostig
15bc62204e jaxpr: support dropped assignment 2020-06-09 13:47:17 -07:00
Jake Vanderplas
2a10dbbf37
deflake remainder of jax (#3343) 2020-06-06 10:51:34 -07:00
Roy Frostig
dc4c9f0450 change cond primitive to an indexed conditional with multiple branch functions
in the core:

* bind and check cond primitive in indexed form
* rewrite abstract evaluation rule
* rewrite translation rule
* rewrite partial evaluation rule
* rewrite batching rule
* rewrite JVP rule
* rewrite transpose rule
* update jaxpr typechecker
* update pretty printer
* update outfeed-usage check
* update reference jaxpr in cond jaxpr test
* update reference regexes in HLO test

in experimental modules:

* update host_callback rewriter
* update loops expression builder
* generalize tf_impl rule
2020-06-03 22:19:15 -07:00
Matthew Johnson
177e7cf311
moved check_jaxpr code around to match eval_jaxpr (#3240)
* moved check_jaxpr code around to match eval_jaxpr

This change is mostly stylistic; it brings check_jaxpr closer to
eval_jaxpr (and the other jaxpr interpreters) in organization. There's a
slight tweak to an error message which lets us save some slightly
redundant code.

* fixes and tweaks
2020-06-02 19:10:55 -07:00
Peter Hawkins
042df4ebff
Fix pytype errors. (#3291) 2020-06-02 10:26:43 -04:00
Peter Hawkins
34065df248
Add some type annotations to core and partial_eval. (#3251) 2020-06-01 21:45:36 -04:00
Matthew Johnson
49a441f745
revisions to #3197 (#3264)
revert find_top_trace change from #3197

The previous version was written and tested for performance; the revised
version caused at least a 25% slowdown in the dispatch time of
`lax.add(1, 2)` (and so likely a much bigger slowdown for the
find_top_trace timing alone).

Instead, we can just change the error message in xla.abstractify, since
invalid types lead to abstractification errors when we apply primitive
impls.
2020-06-01 13:24:40 -07:00
Tom Hennigan
6124f703af
Add support for buffer donation in jit and pmap. (#2936)
For a computation of the form:

    >>> f = lambda x: x ** 2
    >>> f = jax.jit(f)
    >>> while run:
    ...   x = f(x)

JAX must currently always have two copies of `x` in device memory since there
is no reliable way in Python to determine whether there will be future uses of
`x`. This causes two classes of problem:

  1. Users at the limit of available device are constrained by the additional
     copy of their parameters and other state while they typically only require
     one copy. This typically frees 100M+ of device memory and is a critical
     optimization for larger models to match state of the art performance in
     other frameworks.

  2. This constant alloc/free of the input/output buffers can cause memory
     fragmentation on some platforms (although having a reusing allocator and
     limiting run-ahead may be a better solution for this problem).

We propose fixing this by using input/output aliasing as supported by XLA. We
will support this in JAX by allowing certain arguments of jit/pmap decorated
functions to be donated and reused as outputs:

    >>> f = lambda x: x ** 2
    >>> f = jit(f, donate_argnums=0)
    >>> while run:
    ...   x = f(x)

JAX will determine that the donated input `x` can alias with the output of the
function and it will instruct XLA it _must_ write the result to this buffer.

If a user tries to reuse a buffer after it has been donated they get an error
that the buffer is invalid:

    >>> y = f(x)
    >>> jax.device_get(x)
    ...
    RuntimeError: Invalid argument: CopyToHostAsync() called on invalid buffer.

The semantics of `donate_argnums` follows that of `static_argnums`, namely that
it identifies positional arguments to the computation that are to be donated
to the computation and used as part of the output.

One feature that is also enabled by this is invalidating buffers that should
only be used once, for example PRNGKeys:

    >>> @partial(jit, donate_argnums=0)
    ... def move(x):
    ...   # Do something complex enough for JAX to just optimize it away.
    ...   return tree_map(lambda x: x + x - x, x)

    >>> def safe_eager_uniform(key, *a, **k):
    ...   assert hasattr(key, 'device_buffer'), "random must run eagerly"
    ...   key = move(key)
    ...   return jax.random.uniform(key, *a, **k)

This is not a complete answer to random safety since it is still possible to
reuse a key as part of a traced computation, however it can be used to support
this feature (somewhat inefficiently) in eager mode.
2020-05-31 15:00:16 -07:00
Roy Frostig
e80e9634a7 jaxpr-dependent gensym to avoid var duplication 2020-05-27 12:03:34 -07:00
George Necula
f1ae2166d0
Added argument check to all primitives. (#3197)
* Added argument check to all primitives.

The issue that inspired this is that `lax.tie_in` is
easy to misuse if the first argument is not a JAX type, then
it silently disappears. This means that `lax.tie_in((x, x), const)`
is the same as `const` even though `x` is a tracer.

This error would be caught previously if core.skip_checks == False
because then `bind` checks its arguments. I have essentially added
an unconditional argument check to `bind`.

In case this is considered too inefficient, we can add argument
checking to individual primivites, e.g., tie_in. For most primitives
if a non-JAX array is passed, the `impl` rule would fire and `numpy`
would report the error somehow, perhaps.

* Merged find_top_trace with check_args

This was previously merged as #2948 but reverted awaiting the fixes
in some user code.
2020-05-24 19:12:37 +03:00
Roy Frostig
c293a102b2 work around mypy 2020-05-21 20:54:02 -07:00
Roy Frostig
69d7bcf7fb except-and-raise during jaxpr checking, adding jaxpr as context, and simplify type environment 2020-05-21 20:02:30 -07:00
Roy Frostig
8e61ce8d1a fix unitvar comparisons and move to class attributes 2020-05-21 18:28:09 -07:00
Roy Frostig
7ff389bd03 extend type transfer to all primitives, including call and map primitives 2020-05-21 13:21:07 -07:00
Roy Frostig
e2cc568997 raise type errors consistently in jaxpr checker 2020-05-21 13:21:07 -07:00
Roy Frostig
1e55603344 avoid attempt to read literals from the typechecking environment 2020-05-21 13:21:07 -07:00
Roy Frostig
0f109d9fe0 add jaxpr context to typechecker error message 2020-05-21 13:21:07 -07:00
Roy Frostig
3705252be6 have UnitVar subclass Var (caught by mypy) 2020-05-21 13:21:07 -07:00
Roy Frostig
42e7e20eab update check_jaxpr doc 2020-05-21 13:21:07 -07:00
Roy Frostig
cc34ed2693 check aval compatibility, not strict equality, when typechecking jaxpr equations 2020-05-21 13:21:07 -07:00
Roy Frostig
0c2c558482 check that variables are typed equally throughout a jaxpr 2020-05-21 13:21:07 -07:00
Roy Frostig
8e70769cba factor out jaxpr-check context and variable environment 2020-05-21 13:21:07 -07:00
Roy Frostig
1205f7a00f factor out jaxpr equation checks 2020-05-21 13:21:07 -07:00
Roy Frostig
94b1f631ea raise TypeError for jaxpr typechecking errors 2020-05-21 13:21:07 -07:00
Roy Frostig
82a9af519a typecheck jaxpr equations 2020-05-21 13:21:07 -07:00
Matthew Johnson
a4094f72a4
revise "Tracer with raw numpy" error message (#3160)
* revise "Tracer with raw numpy" error message

fixes #3133

* fix f-string typo

* fix typo

Co-authored-by: James Bradbury <jekbradbury@google.com>

Co-authored-by: James Bradbury <jekbradbury@google.com>
2020-05-20 19:09:44 -07:00
George Necula
c375adf52a
Implementation of id_tap/id_print using outfeed. (#3006)
This was already merged as #2791 but reverted due to XLA crashes.

This reverts commit 769d703b7ac1011babef6289382f1a14d7aafc42.
2020-05-08 17:18:11 +03:00
George Necula
769d703b7a Undo the id_print/id_tap feature (PR #2791)
Crashes on Travis with the latest 0.1.46. Need to figure out what is going on
2020-05-07 20:48:33 +03:00
George Necula
9f0795b8f1 Unified the eager and jit paths
Added error checking for outfeed_receiver not started to primitive computations
2020-05-07 16:24:13 +03:00
George Necula
970e475e0a
Undo strict checking of LAX primitives (#2996)
This undoes d08dec5d20
2020-05-07 16:16:22 +03:00
George Necula
804e083e66
Fix pytype for copybara import (#2995) 2020-05-07 13:28:24 +03:00
George Necula
d08dec5d63
Added argument check to all primitives. (#2948)
* Added argument check to all primitives.

The issue that inspired this is that `lax.tie_in` is
easy to misuse if the first argument is not a JAX type, then
it silently disappears. This means that `lax.tie_in((x, x), const)`
is the same as `const` even though `x` is a tracer.

This error would be caught previosuly if core.skip_checks == False
because then `bind` checks its arguments. I have essentially
added an unconditional argument check to `bind`.

In case this is considered too inefficient, we can add argument
checking to individual primivites, e.g., tie_in. For most primitives
if a non-JAX array is passed, the `impl` rule would fire and
`numpy` would report the error somehow, perhaps.

* Merged find_top_trace with check_args
2020-05-07 09:37:20 +03:00
Peter Hawkins
50dc44be6f
Fix IntEnum test when checking is enabled. (#2981) 2020-05-07 08:46:13 +03:00
Peter Hawkins
b1bc841ae5
Replace np -> jnp, onp -> np in more places. (#2973)
* Replace np -> jnp, onp -> np in more places.

Context: #2370

* Fix typo in random_test.py
2020-05-05 16:40:41 -04:00