In principle, JAX should not need a hand-written CUDA kernel for the ThreeFry2x32 algorithm. In practice XLA aggresively inlines, which causes compilation times on GPU blow up when compiling potentially many copies of the PRNG kernel in a program. As a workaround, we add a hand-written CUDA kernel mostly to reduce compilation time.
When XLA becomes smarter about compiling this particular hash function, we should be able to remove the hand-written kernel once again.
* Change scalar promotion rules to prefer array types over scalar types.
Currently JAX does not treat Python scalars specially during type promotion. This means that, for example:
`1. + np.array([...], np.float32)`
ends up as an array of type np.float64. The `1.` is promoted to a default type (here np.float64), and the type promotion of a np.float64 and an np.float32 is an np.float64. This is unlike classic NumPy, which treats scalars specially during type promotion, in particular, preferring the type of an array over the type of a scalar.
This change adds a notion of weak_type to JAX avals. During type promotion, we prefer non-weak types, i.e., the type of the array in the example above, ignoring the type of the scalar.
In contexts where a Python scalar is to be promoted to a NumPy value, a default type is used (e.g., `np.float_`). This change also makes it possible to use 32-bit default types that differ from NumPy's default types. The JAX test suite passes with 32-bit default types. However, we do not yet enable this change or expose it in the API.
* Move internal type-related functions into a new (internal) jax.types module.
Avoid calling onp type functions in lieu of the wrappers in jax.types. Currently these do the same thing, but future changes will make the behavior of the jax type functions diverge from the classic NumPy versions in some cases.
Move xla_bridge.canonicalize_dtype into jax.types, since it fits there more naturally.
* Rename jax.types to jax.dtypes.
* s/types/dtypes/ in tests.
In the case of gumbel, we take the log(-log(x)), as such we would not want to let x be 0 or 1 as we would get a non-finite number.
In the case of laplace, we take the log1p(-abs(x)), as such we would not want to let x be -1 or 1 as we would get a non-finite number.
This was found by inspection, I have no evidence that this happens in practice.