# Copyright 2020 The JAX Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Benchmarks for JAX linear algebra functions.""" import google_benchmark import jax import jax.numpy as jnp import numpy as np @google_benchmark.register @google_benchmark.option.arg_names(['m', 'n']) @google_benchmark.option.args_product( [[1, 2, 5, 10, 100, 500, 800, 1000], [1, 2, 5, 10, 100, 500, 800, 1000]] ) def svd(state): np.random.seed(1234) m, n = state.range(0), state.range(1) x = np.random.randn(m, n).astype(np.float32) jax.block_until_ready(jnp.linalg.svd(x)[0]) while state: jax.block_until_ready(jnp.linalg.svd(x)[0]) if __name__ == '__main__': google_benchmark.main()