# Copyright 2018 The JAX Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Primitive dispatch and jit dispatch. from __future__ import annotations import atexit from collections.abc import Sequence import dataclasses import enum from functools import partial import itertools import logging import threading import time from typing import Any, Callable, NamedTuple import jax from jax._src import api from jax._src import array from jax._src import basearray from jax._src import config from jax._src import core from jax._src import dtypes from jax._src import lib from jax._src import source_info_util from jax._src import traceback_util from jax._src import util from jax._src.abstract_arrays import array_types from jax._src.interpreters import ad from jax._src.interpreters import batching from jax._src.interpreters import mlir from jax._src.interpreters import pxla from jax._src.interpreters import xla from jax._src.layout import DeviceLocalLayout, Layout from jax._src.lib import xla_client as xc from jax._src.mesh import AbstractMesh, Mesh from jax._src.monitoring import record_event_duration_secs, record_event_time_span from jax._src.partition_spec import PartitionSpec from jax._src.sharding import Sharding from jax._src.sharding_impls import ( NamedSharding, SingleDeviceSharding, TransferToMemoryKind, GSPMDSharding, PositionalSharding, is_single_device_sharding) import numpy as np JAXPR_TRACE_EVENT = "/jax/core/compile/jaxpr_trace_duration" JAXPR_TO_MLIR_MODULE_EVENT = "/jax/core/compile/jaxpr_to_mlir_module_duration" BACKEND_COMPILE_EVENT = "/jax/core/compile/backend_compile_duration" traceback_util.register_exclusion(__file__) xe = xc._xla Backend = xe.Client Device = xc.Device CompileOptions = xc.CompileOptions map, unsafe_map = util.safe_map, map zip, unsafe_zip = util.safe_zip, zip logger = logging.getLogger(__name__) # This flag is set on exit; no logging should be attempted _on_exit = False ### op-by-op execution def apply_primitive(prim, *args, **params): """Impl rule that compiles and runs a single primitive 'prim' using XLA.""" fun = xla_primitive_callable(prim, **params) # TODO(yashkatariya): Investigate adding is_primitive to jit and never # triggering the disable jit path instead of messing around with it here. prev = lib.jax_jit.swap_thread_local_state_disable_jit(False) try: outs = fun(*args) finally: lib.jax_jit.swap_thread_local_state_disable_jit(prev) return outs @util.cache() def xla_primitive_callable(prim: core.Primitive, **params): util.test_event("xla_primitive_callable_cache_miss") def prim_fun(*args): with config.eager_constant_folding(False): return prim.bind(*args, **params) prim_fun.__name__ = prim.name prim_fun.__qualname__ = prim.name prim_fun._apply_primitive = True return api.jit(prim_fun) def simple_impl(prim): prim.def_impl(partial(apply_primitive, prim)) RuntimeToken = Any class RuntimeTokenSet(threading.local): """See docstring for effects.py module for the calling convention for tokens.""" # For each ordered effect, the token returned by the last dispatched # computation, sharded over the devices in that computation. current_tokens: dict[core.Effect, core.Token] # For each device, the runtime token returned by the last dispatched # computation on that device. output_runtime_tokens: dict[Device, RuntimeToken] def __init__(self): self.current_tokens = {} self.output_runtime_tokens = {} def get_token_input( self, eff: core.Effect, devices: list[Device] ) -> core.Token: tok = self.current_tokens.get(eff, np.zeros(0, np.bool_)) if isinstance(tok, core.Token): # The order of devices may change, so we need to reshard if necessary. # TODO(yueshengys): This might still be buggy in a multi-process SPMD # scenario. Revise the logic later. A distributed shutdown barrier inside # the XLA program may be needed. return jax.device_put(tok, PositionalSharding(devices)) # We only use replicated sharding for the first time when the token for the # order effect hasn't been created. s = GSPMDSharding.get_replicated(devices) sharded_tok = core.Token(pxla.shard_args([s], [None], [None], [tok])[0]) self.current_tokens[eff] = sharded_tok return sharded_tok def set_token_result(self, eff: core.Effect, token: core.Token): self.current_tokens[eff] = token def set_output_runtime_token(self, device: Device, token: RuntimeToken): # We're free to clobber the previous output token because on each # device we have a total ordering of computations. Only the token # from the latest computation matters. self.output_runtime_tokens[device] = token def clear(self): self.current_tokens = {} self.output_runtime_tokens = {} def block_until_ready(self): for token in self.current_tokens.values(): token.block_until_ready() for token in self.output_runtime_tokens.values(): token.block_until_ready() self.clear() runtime_tokens: RuntimeTokenSet = RuntimeTokenSet() @atexit.register def wait_for_tokens(): runtime_tokens.block_until_ready() class LogElapsedTimeContextManager: __slots__ = ['fmt', 'fun_name', 'event', 'start_time'] def __init__(self, fmt: str, fun_name: str, event: str | None = None): self.fmt = fmt self.fun_name = fun_name self.event = event def __enter__(self): self.start_time = time.time() def __exit__(self, exc_type, exc_value, traceback): if _on_exit: return end_time = time.time() elapsed_time = end_time - self.start_time log_priority = logging.WARNING if config.log_compiles.value else logging.DEBUG if logger.isEnabledFor(log_priority): logger.log(log_priority, self.fmt.format( fun_name=self.fun_name, elapsed_time=elapsed_time)) if self.event is not None: record_event_duration_secs(self.event, elapsed_time) record_event_time_span(self.event, self.start_time, end_time) log_elapsed_time = LogElapsedTimeContextManager def should_tuple_args(num_args: int, platform: str) -> bool: # CPU and GPU do not need tuples as they use host-side data structures that # do not have small bounds. # TPU only needs a tuple for very long lists if platform == "tpu": return num_args > 2000 else: return False def jaxpr_has_primitive(jaxpr: core.Jaxpr, prim_name: str) -> bool: """Whether there is a primitive given by user anywhere inside a Jaxpr.""" for eqn in jaxpr.eqns: if prim_name in eqn.primitive.name: return True for subjaxpr in core.subjaxprs(jaxpr): if jaxpr_has_primitive(subjaxpr, prim_name): return True return False # Use this registry with caution. It will void the guarantee that lowering to # stablehlo is oblivious of physical devices. prim_requires_devices_during_lowering: set[core.Primitive] = set() @util.weakref_lru_cache def jaxpr_has_prim_requiring_devices(jaxpr: core.Jaxpr) -> bool: for eqn in jaxpr.eqns: if eqn.primitive in prim_requires_devices_during_lowering: return True for subjaxpr in core.subjaxprs(jaxpr): if jaxpr_has_prim_requiring_devices(subjaxpr): return True return False class SourceInfo(NamedTuple): source_info: source_info_util.SourceInfo eqn_name: str @util.weakref_lru_cache def get_intermediate_shardings( jaxpr: core.Jaxpr) -> Sequence[tuple[Sharding, SourceInfo]]: from jax._src import pjit from jax.experimental import shard_map out = [] for eqn in jaxpr.eqns: if eqn.primitive is pjit.sharding_constraint_p: s = eqn.params['sharding'] if isinstance(s, NamedSharding) and isinstance(s.mesh, AbstractMesh): continue source_info = SourceInfo(eqn.source_info, eqn.primitive.name) out.append((s, source_info)) elif eqn.primitive is pjit.pjit_p: source_info = SourceInfo(eqn.source_info, eqn.primitive.name) out.extend((i, source_info) for i in eqn.params['in_shardings']) out.extend((o, source_info) for o in eqn.params['out_shardings']) elif eqn.primitive is shard_map.shard_map_p: if isinstance(eqn.params['mesh'], AbstractMesh): continue source_info = SourceInfo(eqn.source_info, eqn.primitive.name) def _names_to_pspec(names): ndmin = max(names) + 1 if names else 0 return PartitionSpec(*(names.get(i) for i in range(ndmin))) out.extend((NamedSharding(eqn.params['mesh'], _names_to_pspec(names)), source_info) for names in [*eqn.params['in_names'], *eqn.params['out_names']]) elif eqn.primitive is device_put_p: source_info = SourceInfo(eqn.source_info, eqn.primitive.name) out.extend((s, source_info) for s in eqn.params['devices'] if isinstance(s, Sharding) and s.memory_kind is not None) for subjaxpr in core.subjaxprs(jaxpr): out.extend(get_intermediate_shardings(subjaxpr)) return out def jaxpr_has_bints(jaxpr: core.Jaxpr) -> bool: return (any(type(v.aval.dtype) is core.bint for v in jaxpr.invars if isinstance(v.aval, core.UnshapedArray)) or any(_is_bint_axis_size(d) for j in itertools.chain([jaxpr], core.subjaxprs(jaxpr)) for e in j.eqns for v in e.outvars if isinstance(v.aval, core.DShapedArray) for d in v.aval.shape)) def _is_bint_axis_size(d: core.AxisSize) -> bool: if isinstance(d, core.DArray): assert not d.shape return type(d.dtype) is core.bint elif isinstance(d, core.Var): return (isinstance(d.aval, core.DShapedArray) and type(d.aval.dtype) is core.bint) return False def check_arg(arg: Any): if not (isinstance(arg, core.Tracer) or core.valid_jaxtype(arg)): raise TypeError(f"Argument '{arg}' of type {type(arg)} is not a valid " "JAX type.") def jaxpr_replicas(jaxpr: core.Jaxpr) -> int: """The number of replicas needed for a jaxpr. For a eqn, multiply the `axis_size` with the `jaxpr_replicas` of the subjaxprs. For a list of eqns, take the maximum number of replicas. """ return max(unsafe_map(_eqn_replicas, jaxpr.eqns), default=1) # TODO(mattjj): this function assumes that only pmap has a parameter named # axis_size, and that it corresponds to cross-replica mapping def _eqn_replicas(eqn: core.JaxprEqn) -> int: call_jaxpr = eqn.params.get("call_jaxpr") if call_jaxpr: return eqn.params.get('axis_size', 1) * jaxpr_replicas(call_jaxpr) elif eqn.primitive in xla.initial_style_primitives: return _initial_style_primitive_replicas(eqn.params) else: return 1 def _initial_style_primitive_replicas(params: dict[str, Any]) -> int: return max(core.traverse_jaxpr_params(jaxpr_replicas, params).values(), default=1) def needs_check_special() -> bool: return config.debug_infs.value or config.debug_nans.value def check_special(name: str, bufs: Sequence[basearray.Array]) -> None: if needs_check_special(): for buf in bufs: _check_special(name, buf.dtype, buf) def _check_special(name: str, dtype: np.dtype, buf: basearray.Array) -> None: if dtypes.issubdtype(dtype, np.inexact): if config.debug_nans.value and np.any(np.isnan(np.asarray(buf))): raise InternalFloatingPointError(name, "nan") if config.debug_infs.value and np.any(np.isinf(np.asarray(buf))): raise InternalFloatingPointError(name, "inf") class CopySemantics(enum.Enum): ALIAS = enum.auto() COPY = enum.auto() DONATE = enum.auto() class InternalFloatingPointError(Exception): name: str ty: str def __init__(self, name: str, ty: str): self.name = name self.ty = ty def maybe_recursive_nan_check(e: Exception, fun: Callable, args, kwargs, ) -> None: # always raises an exception print("Invalid nan value encountered in the output of a jax.jit " "function. Calling the de-optimized version.") try: _ = fun(*args, **kwargs) except (FloatingPointError, ZeroDivisionError) as e2: raise e2 from None else: _raise_no_nan_in_deoptimized(e) def _raise_no_nan_in_deoptimized(e) -> None: msg = (f"{str(e)}. Because " "jax_config.debug_nans.value and/or config.jax_debug_infs is set, the " "de-optimized function (i.e., the function as if the `jit` " "decorator were removed) was called in an attempt to get a more " "precise error message. However, the de-optimized function did not " "produce invalid values during its execution. This behavior can " "result from `jit` optimizations causing the invalid value to be " "produced. It may also arise from having nan/inf literals as " "inputs or outputs, like `jax.jit(lambda ...: jax.numpy.nan)(...)`. " "\n\n" "It may be possible to avoid the invalid value by removing the " "`jit` decorator, at the cost of losing optimizations. " "\n\n" "If you see this error, consider opening a bug report at " "https://github.com/jax-ml/jax.") raise FloatingPointError(msg) from None def _identity_fn(x): return x def _different_device_order_reshard(x, target_sharding, copy: CopySemantics): x._check_if_deleted() inp_sharding = x.sharding assert isinstance(inp_sharding, NamedSharding) donate_argnums = 0 if copy == CopySemantics.DONATE else None if inp_sharding._device_assignment == target_sharding._device_assignment: return api.jit(_identity_fn, out_shardings=target_sharding, donate_argnums=donate_argnums)(x) if inp_sharding.device_set != target_sharding.device_set: inp_ids = [d.id for d in inp_sharding._device_assignment] inp_plat = inp_sharding._device_assignment[0].platform.upper() target_ids = [d.id for d in target_sharding._device_assignment] target_plat = target_sharding._device_assignment[0].platform.upper() raise ValueError("Input and target sharding should have the same set of " f"devices. Got input's device set ids: {inp_ids} on " f"platform {inp_plat} and target sharding's device set " f"ids: {target_ids} on platform {target_plat}") if inp_sharding.is_fully_replicated: permute_order = None else: permute_order = np.vectorize(target_sharding._device_assignment.index, otypes=[int])(inp_sharding._device_assignment) new_mesh = Mesh( target_sharding.mesh.devices.reshape(inp_sharding.mesh.axis_sizes), inp_sharding.mesh.axis_names) new_s = NamedSharding( new_mesh, inp_sharding.spec, memory_kind=target_sharding.memory_kind, _logical_device_ids=(None if permute_order is None else tuple(permute_order.tolist()))) new_x = _reorder_shards(x, new_s, CopySemantics.ALIAS) return api.jit(_identity_fn, out_shardings=target_sharding, donate_argnums=donate_argnums)(new_x) def _reorder_shards(x, new_s, copy_semantics: CopySemantics): """Reorders array shards to match the order indicated by the new sharding.""" xc_copy_semantics = pxla.to_xc_copy_semantics([copy_semantics])[0] return xc.reorder_shards(x, new_s, xc_copy_semantics) # type: ignore @dataclasses.dataclass(frozen=True) class _DeferredShardArg: """Deferred call to `pxla.shard_args`. Per-array impls return this object instead of a result array to indicate a deferred `shard_args` call. `_batched_device_put_impl` then batches all `_DeferredShardArg` objects into a single `shard_args` call. """ x: Any s: Sharding aval: core.AbstractValue committed: bool copy_semantics: CopySemantics def result_handler(self, shard_arg_result): return pxla.global_aval_to_result_handler( self.aval, self.s, self.committed)(shard_arg_result) def _device_put_sharding_impl(x, aval, device, copy): from jax.experimental import multihost_utils if isinstance(device, Sharding): s = device if (getattr(x, 'sharding', None) == s and getattr(x, '_committed', False) and copy == CopySemantics.ALIAS): return x if (not s.is_fully_addressable and isinstance(x, array.ArrayImpl) and not x.is_fully_addressable): assert isinstance(s, Sharding) return _different_device_order_reshard(x, s, copy) if (s.is_fully_addressable and isinstance(x, array.ArrayImpl) and x.is_fully_addressable and s.num_devices > 1 and s._internal_device_list != x.sharding._internal_device_list and # pytype: disable=attribute-error s.device_set == x.sharding.device_set): assert isinstance(s, Sharding) return _different_device_order_reshard(x, s, copy) if not s.is_fully_addressable: if ((isinstance(x, array.ArrayImpl) and not x._committed) or type(x) in array_types): # TODO(emilyaf): Remove this condition when jit works when a sharding # has no local devices. if not config.enable_empty_arrays.value: multihost_utils.assert_equal( x, fail_message=( f"{type(x)} passed to device_put is not the same on each" " process. Make sure you are passing the same value of" f" {type(x)} on each process.")) return _DeferredShardArg(x, s, aval, True, copy) # TODO(yashkatariya,mattjj): Link to a doc about McJAX and jax.Array. raise ValueError( "device_put's second argument must be a Device or a Sharding which" f" represents addressable devices, but got {s}. Please pass device or" " Sharding which represents addressable devices.") return _DeferredShardArg(x, s, aval, True, copy) # Only `Device` exists below. `Sharding` instance is handled above. if isinstance(x, array.ArrayImpl): if not x.is_fully_addressable: raise ValueError( "device_put's first argument must be a fully addressable array, but " f"got value with devices {x.devices()}") if device is None: if copy == CopySemantics.ALIAS: return x else: return _DeferredShardArg(x, x.sharding, aval, x.committed, copy) elif is_single_device_sharding(x.sharding): device = x.sharding._device_assignment[0] if device is None else device if copy == CopySemantics.COPY: return xc.batched_device_put(aval, SingleDeviceSharding(device), [x], [device], True, True) return pxla.batched_device_put(aval, SingleDeviceSharding(device), [x], [device]) sh = SingleDeviceSharding(pxla.get_default_device() if device is None else device) return _DeferredShardArg(x, sh, aval, device is not None, copy) def _device_put_impl( x, *, device: Device | Sharding | Layout | None, src: Device | Sharding | Layout | None, copy: CopySemantics): if (isinstance(device, TransferToMemoryKind) or isinstance(src, TransferToMemoryKind)): raise ValueError( "TransferToMemoryKind argument to jax.device_put can only be used" " inside jax.jit. If you are using device_put outside jax.jit, then" " please provide a concrete Sharding with memory_kind.") try: aval = core.abstractify(x) except TypeError as err: raise TypeError( f"Argument '{x}' of type {type(x)} is not a valid JAX type") from err if isinstance(device, Layout): l = device dll = l.device_local_layout x_dll = x.layout.device_local_layout if hasattr(x, 'layout') else None if dll is None and l.sharding is None: return _device_put_sharding_impl(x, aval, l.sharding, copy) if (not isinstance(l.sharding, Sharding) or not isinstance(dll, (DeviceLocalLayout, type(None)))): raise ValueError( "sharding and device_local_layout in `Layout` instance should be" f" concrete. Got layout: {l} for input {aval.str_short()}") if (getattr(x, 'layout', None) == l and getattr(x, '_committed', False) and copy == CopySemantics.ALIAS): return x if x_dll is None and dll is None: return _device_put_sharding_impl(x, aval, l.sharding, copy) return api.jit( _identity_fn, out_shardings=l, donate_argnums=(0 if copy == CopySemantics.DONATE else None))(x) return _device_put_sharding_impl(x, aval, device, copy) def _batched_device_put_impl( *xs, devices: Sequence[Device | Sharding | Layout | None], srcs: Sequence[Device | Sharding | Layout | None], copy_semantics: Sequence[CopySemantics]): ys = [] dsa_indices, dsa_xs, dsa_shardings, dsa_copy_semantics = [], [], [], [] for i, (x, device, src, cp) in enumerate(zip(xs, devices, srcs, copy_semantics)): y = _device_put_impl(x, device=device, src=src, copy=cp) if isinstance(y, _DeferredShardArg): dsa_indices.append(i) dsa_xs.append(y.x) dsa_shardings.append(y.s) dsa_copy_semantics.append(y.copy_semantics) ys.append(y) if dsa_xs: # Batch shard_arg calls. Helps improve efficiency for backends that support # efficient batch transfer. # device_put handles `Layout` via a different path, so just pass `None` as # the layout here. shard_arg_results = pxla.shard_args(dsa_shardings, [None] * len(dsa_xs), dsa_copy_semantics, dsa_xs) for i, shard_arg_result in zip(dsa_indices, shard_arg_results): assert isinstance(ys[i], _DeferredShardArg) ys[i] = ys[i].result_handler(shard_arg_result) return ys device_put_p = core.Primitive('device_put') device_put_p.multiple_results = True device_put_p.def_impl(_batched_device_put_impl) def _device_put_abstract_eval(*xs, devices, srcs, copy_semantics): return xs device_put_p.def_abstract_eval(_device_put_abstract_eval) def _device_put_transpose(cts, *_, devices, srcs, copy_semantics): results = [None] * len(cts) dp_args = [] for i, (ct, device, src, cp) in enumerate(zip(cts, devices, srcs, copy_semantics)): if type(ct) is not ad.Zero: dp_args.append((i, ct, device, src, cp)) if dp_args: indices, args, devices, srcs, copy_semantics = list(zip(*dp_args)) new_copy_semantics = [] for cp in copy_semantics: if cp == CopySemantics.DONATE: raise ValueError( "donate=True is not allowed during tranposition of device_put." " Please file an issue if you want this to be supported.") elif cp == CopySemantics.ALIAS: new_copy_semantics.append(CopySemantics.COPY) else: assert cp == CopySemantics.COPY new_copy_semantics.append(CopySemantics.COPY) ys = device_put_p.bind(*args, devices=srcs, srcs=devices, copy_semantics=new_copy_semantics) for i, y in zip(indices, ys): results[i] = y return results ad.primitive_jvps[device_put_p] = partial(ad.linear_jvp, device_put_p) ad.primitive_transposes[device_put_p] = _device_put_transpose def _device_put_batcher(batched_args, batch_dims, **params): mapped_batch_dims = [bd for bd in batch_dims if bd is not batching.not_mapped] assert not mapped_batch_dims or all( mapped_batch_dims[0] == bd for bd in mapped_batch_dims[1:] ), batch_dims return device_put_p.bind(*batched_args, **params), batch_dims batching.primitive_batchers[device_put_p] = _device_put_batcher def _tpu_gpu_device_put_lowering(ctx, *xs, devices, srcs, copy_semantics): # TODO(yashkatariya): Maybe we should add the custom calls anyways if it's # being used inside jit? Atleast for now, this preserves the old behavior. if ctx.module_context.all_default_mem_kind: return xs def lower(x, device, aval, out_aval): if (isinstance(device, (Sharding, TransferToMemoryKind)) and device.memory_kind is not None): if isinstance(device, Sharding): if config.use_shardy_partitioner.value: x = mlir.wrap_with_sharding_op( ctx, x, out_aval, device._to_sdy_sharding(aval.ndim)) else: x = mlir.wrap_with_sharding_op( ctx, x, out_aval, device._to_xla_hlo_sharding(aval.ndim).to_proto()) x = mlir.wrap_with_memory_kind(x, device.memory_kind, out_aval) return x return x return list(map(lower, xs, devices, ctx.avals_in, ctx.avals_out)) mlir.register_lowering( device_put_p, _tpu_gpu_device_put_lowering, platform='tpu') mlir.register_lowering( device_put_p, _tpu_gpu_device_put_lowering, platform='gpu') def _common_device_put_lowering(ctx, *xs, devices, srcs, copy_semantics): return xs mlir.register_lowering(device_put_p, _common_device_put_lowering) def _propagate_mem_kind_dp(*xm, devices, srcs, copy_semantics): memory_kinds = [] for device in devices: if isinstance(device, (Sharding, TransferToMemoryKind)): memory_kinds.append(device.memory_kind) else: memory_kinds.append(None) return memory_kinds pxla.memory_kind_propagate_rule[device_put_p] = _propagate_mem_kind_dp