# Copyright 2022 The JAX Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License """A JIT-compatible library for QDWH-based singular value decomposition. QDWH is short for QR-based dynamically weighted Halley iteration. The Halley iteration implemented through QR decompositions is numerically stable and does not require solving a linear system involving the iteration matrix or computing its inversion. This is desirable for multicore and heterogeneous computing systems. References: Nakatsukasa, Yuji, and Nicholas J. Higham. "Stable and efficient spectral divide and conquer algorithms for the symmetric eigenvalue decomposition and the SVD." SIAM Journal on Scientific Computing 35, no. 3 (2013): A1325-A1349. https://epubs.siam.org/doi/abs/10.1137/120876605 Nakatsukasa, Yuji, Zhaojun Bai, and François Gygi. "Optimizing Halley's iteration for computing the matrix polar decomposition." SIAM Journal on Matrix Analysis and Applications 31, no. 5 (2010): 2700-2720. https://epubs.siam.org/doi/abs/10.1137/090774999 """ from __future__ import annotations from collections.abc import Sequence import functools import operator from typing import Any import jax from jax import lax from jax._src import core import jax.numpy as jnp @functools.partial(jax.jit, static_argnums=(1, 2, 3, 4)) def _svd_tall_and_square_input( a: Any, hermitian: bool, compute_uv: bool, max_iterations: int, subset_by_index: tuple[int, int] | None = None, ) -> Any | Sequence[Any]: """Singular value decomposition for m x n matrix and m >= n. Args: a: A matrix of shape `m x n` with `m >= n`. hermitian: True if `a` is Hermitian. compute_uv: Whether to also compute `u` and `v` in addition to `s`. max_iterations: The predefined maximum number of iterations of QDWH. Returns: A 3-tuple (`u`, `s`, `v`), where `u` is a unitary matrix of shape `m x n`, `s` is vector of length `n` containing the singular values in the descending order, `v` is a unitary matrix of shape `n x n`, and `a = (u * s) @ v.T.conj()`. For `compute_uv=False`, only `s` is returned. """ u_p, h, _, _ = lax.linalg.qdwh( a, is_hermitian=hermitian, max_iterations=max_iterations ) # TODO: Uses `eigvals_only=True` if `compute_uv=False`. v, s = lax.linalg.eigh( h, subset_by_index=subset_by_index, sort_eigenvalues=False ) # Singular values are non-negative by definition. But eigh could return small # negative values, so we clamp them to zero. s = jnp.maximum(s, 0.0) # Sort or reorder singular values to be in descending order. sort_idx = jnp.argsort(s, descending=True) s_out = s[sort_idx] if not compute_uv: return s_out # Reorders eigenvectors. v_out = v[:, sort_idx] u_out = u_p @ v_out # Makes correction if computed `u` from qdwh is not unitary. # Section 5.5 of Nakatsukasa, Yuji, and Nicholas J. Higham. "Stable and # efficient spectral divide and conquer algorithms for the symmetric # eigenvalue decomposition and the SVD." SIAM Journal on Scientific Computing # 35, no. 3 (2013): A1325-A1349. def correct_rank_deficiency(u_out): u_out, r = lax.linalg.qr(u_out, full_matrices=False) u_out = u_out @ jnp.diag(jnp.where(jnp.diag(r) >= 0, 1, -1)) return u_out eps = float(jnp.finfo(a.dtype).eps) do_correction = s_out[-1] <= a.shape[1] * eps * s_out[0] cond_f = lambda args: args[1] body_f = lambda args: (correct_rank_deficiency(args[0]), False) u_out, _ = lax.while_loop(cond_f, body_f, (u_out, do_correction)) return (u_out, s_out, v_out) @functools.partial(jax.jit, static_argnums=(1, 2, 3, 4, 5)) def svd( a: Any, full_matrices: bool, compute_uv: bool = True, hermitian: bool = False, max_iterations: int = 10, subset_by_index: tuple[int, int] | None = None, ) -> Any | Sequence[Any]: """Singular value decomposition. Args: a: A matrix of shape `m x n`. full_matrices: If True, `u` and `vh` have the shapes `m x m` and `n x n`, respectively. If False, the shapes are `m x k` and `k x n`, respectively, where `k = min(m, n)`. compute_uv: Whether to also compute `u` and `v` in addition to `s`. hermitian: True if `a` is Hermitian. max_iterations: The predefined maximum number of iterations of QDWH. subset_by_index: Optional 2-tuple [start, end] indicating the range of indices of singular components to compute. For example, if ``subset_by_index`` = [0,2], then ``svd`` computes the two largest singular values (and their singular vectors if `compute_uv` is true. Returns: A 3-tuple (`u`, `s`, `vh`), where `u` and `vh` are unitary matrices, `s` is vector of length `k` containing the singular values in the non-increasing order, and `k = min(m, n)`. The shapes of `u` and `vh` depend on the value of `full_matrices`. For `compute_uv=False`, only `s` is returned. """ full_matrices = core.concrete_or_error( bool, full_matrices, 'The `full_matrices` argument must be statically ' 'specified to use `svd` within JAX transformations.') compute_uv = core.concrete_or_error( bool, compute_uv, 'The `compute_uv` argument must be statically ' 'specified to use `svd` within JAX transformations.') hermitian = core.concrete_or_error( bool, hermitian, 'The `hermitian` argument must be statically ' 'specified to use `svd` within JAX transformations.', ) max_iterations = core.concrete_or_error( int, max_iterations, 'The `max_iterations` argument must be statically ' 'specified to use `svd` within JAX transformations.', ) if subset_by_index is not None: if len(subset_by_index) != 2: raise ValueError('subset_by_index must be a tuple of size 2.') # Make sure subset_by_index is a concrete tuple. subset_by_index = ( operator.index(subset_by_index[0]), operator.index(subset_by_index[1]), ) if subset_by_index[0] >= subset_by_index[1]: raise ValueError('Got empty index range in subset_by_index.') if subset_by_index[0] < 0: raise ValueError('Indices in subset_by_index must be non-negative.') m, n = a.shape rank = n if n < m else m if subset_by_index[1] > rank: raise ValueError('Index in subset_by_index[1] exceeds matrix size.') if full_matrices and subset_by_index != (0, rank): raise ValueError( 'full_matrices and subset_by_index cannot be both be set.' ) # By convention, eigenvalues are numbered in non-decreasing order, while # singular values are numbered non-increasing order, so change # subset_by_index accordingly. subset_by_index = (rank - subset_by_index[1], rank - subset_by_index[0]) m, n = a.shape is_flip = False if m < n: a = a.T.conj() m, n = a.shape is_flip = True reduce_to_square = False if full_matrices: q_full, a_full = lax.linalg.qr(a, pivoting=False, full_matrices=True) q = q_full[:, :n] u_out_null = q_full[:, n:] a = a_full[:n, :] reduce_to_square = True else: # The constant `1.15` comes from Yuji Nakatsukasa's implementation # https://www.mathworks.com/matlabcentral/fileexchange/36830-symmetric-eigenvalue-decomposition-and-the-svd?s_tid=FX_rc3_behav if m > 1.15 * n: q, a = lax.linalg.qr(a, pivoting=False, full_matrices=False) reduce_to_square = True if not compute_uv: with jax.default_matmul_precision('float32'): return _svd_tall_and_square_input( a, hermitian, compute_uv, max_iterations, subset_by_index ) with jax.default_matmul_precision('float32'): u_out, s_out, v_out = _svd_tall_and_square_input( a, hermitian, compute_uv, max_iterations, subset_by_index ) if reduce_to_square: u_out = q @ u_out if full_matrices: u_out = jnp.hstack((u_out, u_out_null)) is_finite = jnp.all(jnp.isfinite(a)) cond_f = lambda args: jnp.logical_not(args[0]) body_f = lambda args: ( jnp.array(True), jnp.full_like(u_out, jnp.nan), jnp.full_like(s_out, jnp.nan), jnp.full_like(v_out, jnp.nan), ) _, u_out, s_out, v_out = lax.while_loop( cond_f, body_f, (is_finite, u_out, s_out, v_out) ) if is_flip: return (v_out, s_out, u_out.T.conj()) return (u_out, s_out, v_out.T.conj())