JAX: High performance array computing ===================================== .. raw:: html .. raw:: html :file: hero.html .. grid:: 3 :class-container: product-offerings :margin: 0 :padding: 0 :gutter: 0 .. grid-item-card:: Familiar API :columns: 12 6 6 4 :class-card: sd-border-0 :shadow: None JAX provides a familiar NumPy-style API for ease of adoption by researchers and engineers. .. grid-item-card:: Transformations :columns: 12 6 6 4 :class-card: sd-border-0 :shadow: None JAX includes composable function transformations for compilation, batching, automatic differentiation, and parallelization. .. grid-item-card:: Run anywhere :columns: 12 6 6 4 :class-card: sd-border-0 :shadow: None The same code executes on multiple backends, including CPU, GPU, & TPU .. grid:: 3 :class-container: color-cards .. grid-item-card:: :material-regular:`laptop_chromebook;2em` Installation :columns: 12 6 6 4 :link: installation :link-type: ref :class-card: installation .. grid-item-card:: :material-regular:`rocket_launch;2em` Getting started :columns: 12 6 6 4 :link: beginner-guide :link-type: ref :class-card: getting-started .. grid-item-card:: :material-regular:`library_books;2em` User guides :columns: 12 6 6 4 :link: user-guides :link-type: ref :class-card: user-guides If you're looking to train neural networks, use Flax_ and start with its tutorials. For an end-to-end transformer library built on JAX, see MaxText_. Ecosystem --------- JAX itself is narrowly-scoped and focuses on efficient array operations & program transformations. Built around JAX is an evolving ecosystem of machine learning and numerical computing tools; the following is just a small sample of what is out there: .. grid:: 2 :class-container: ecosystem-grid .. grid-item:: :material-outlined:`hub;2em` **Neural networks** - Flax_ - Equinox_ - Keras_ .. grid-item:: :material-regular:`show_chart;2em` **Optimizers & solvers** - Optax_ - Optimistix_ - Lineax_ - Diffrax_ .. grid-item:: :material-outlined:`storage;2em` **Data loading** - Grain_ - `TensorFlow Datasets`_ - `Hugging Face Datasets`_ .. grid-item:: :material-regular:`construction;2em` **Miscellaneous tools** - Orbax_ - Chex_ .. grid-item:: :material-regular:`lan;2em` **Probabilistic programming** - Blackjax_ - Numpyro_ - PyMC_ .. grid-item:: :material-regular:`bar_chart;2em` **Probabilistic modeling** - `TensorFlow Probabilty`_ - Distrax_ .. grid-item:: :material-outlined:`animation;2em` **Physics & simulation** - `JAX MD`_ - Brax_ .. grid-item:: :material-regular:`language;2em` **LLMs** - MaxText_ - AXLearn_ - Levanter_ - EasyLM_ Many more JAX-based libraries have been developed; the community-run `Awesome JAX`_ page maintains an up-to-date list. .. toctree:: :hidden: :maxdepth: 1 :caption: Getting started installation quickstart .. toctree:: :hidden: :maxdepth: 1 tutorials notebooks/Common_Gotchas_in_JAX faq .. toctree:: :hidden: :maxdepth: 2 :caption: More guides/resources user_guides advanced_guide contributor_guide extensions notes jax about .. toctree:: :hidden: :maxdepth: 1 changelog glossary .. _Awesome JAX: https://github.com/n2cholas/awesome-jax .. _AXLearn: https://github.com/apple/axlearn .. _Blackjax: https://blackjax-devs.github.io/blackjax/ .. _Brax: https://github.com/google/brax/ .. _Chex: https://chex.readthedocs.io/ .. _Diffrax: https://docs.kidger.site/diffrax/ .. _Distrax: https://github.com/google-deepmind/distrax .. _EasyLM: https://github.com/young-geng/EasyLM .. _Equinox: https://docs.kidger.site/equinox/ .. _Flax: https://flax.readthedocs.io/ .. _Grain: https://github.com/google/grain .. _Hugging Face Datasets: https://huggingface.co/docs/datasets/ .. _JAX MD: https://jax-md.readthedocs.io/ .. _Keras: https://keras.io/ .. _Levanter: https://github.com/stanford-crfm/levanter .. _Lineax: https://github.com/patrick-kidger/lineax .. _MaxText: https://github.com/google/maxtext/ .. _Numpyro: https://num.pyro.ai/en/latest/index.html .. _Optax: https://optax.readthedocs.io/ .. _Optimistix: https://github.com/patrick-kidger/optimistix .. _Orbax: https://orbax.readthedocs.io/ .. _PyMC: https://www.pymc.io/ .. _TensorFlow Datasets: https://www.tensorflow.org/datasets .. _TensorFlow Probabilty: https://www.tensorflow.org/probability