# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ User-facing transformations. These mostly wrap internal transformations, providing convenience flags to control behavior and handling Python containers (tuples/lists/dicts) of arguments and outputs. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import itertools import operator as op import os import numpy as onp from contextlib import contextmanager from distutils.util import strtobool from six.moves import reduce from . import core from . import linear_util as lu from .core import pack, eval_jaxpr from .api_util import (pytree_fun_to_jaxtupletree_fun, pytree_to_jaxtupletree, pytree_fun_to_flatjaxtuple_fun, apply_jaxtree_fun, wraps) from .tree_util import (process_pytree, node_types, build_tree, PyTreeDef, tree_map, tree_flatten, tree_unflatten, tree_structure, tree_transpose, leaf) from .util import (unzip2, unzip3, curry, partial, safe_map, safe_zip, WrapHashably, prod) from .lib.xla_bridge import canonicalize_dtype, device_count from .abstract_arrays import ShapedArray from .interpreters import partial_eval as pe from .interpreters import xla from .interpreters import pxla from .interpreters import ad from .interpreters import batching from .interpreters import parallel from .config import flags, config map = safe_map zip = safe_zip FLAGS = flags.FLAGS flags.DEFINE_bool("jax_disable_jit", strtobool(os.getenv("JAX_DISABLE_JIT", "False")), "Disable JIT compilation and just call original Python.") def jit(fun, static_argnums=()): """Sets up `fun` for just-in-time compilation with XLA. Args: fun: Function to be jitted. Should be a pure function, as side-effects may only be executed once. Its positional arguments and return value should be arrays, scalars, or standard Python containers (tuple/list/dict) thereof. Keyword arguments and positional arguments specified by `static_argnums` can be anything at all. These are treated as static (see below). static_argnums: A tuple of ints. Specifies which arguments to treat as static (compile-time constant). Operations that only depend on static arguments will be constant-folded. Calling the jitted function with different values for these constants will trigger recompilation. Returns: A wrapped version of `fun`, set up for just-in-time compilation. In the following example, `selu` can be compiled into a single fused kernel by XLA: >>> @jax.jit >>> def selu(x, alpha=1.67, lmbda=1.05): >>> return lmbda * jax.numpy.where(x > 0, x, alpha * jax.numpy.exp(x) - alpha) >>> >>> key = jax.random.PRNGKey(0) >>> x = jax.random.normal(key, (10,)) >>> selu(x) array([-0.54485154, 0.27744263, -0.29255125, -0.91421586, -0.62452525, -0.2474813 , -0.8574326 , -0.7823267 , 0.7682731 , 0.59566754], dtype=float32) """ @wraps(fun) def f_jitted(*args, **kwargs): if _jit_is_disabled or config.read('jax_disable_jit'): return fun(*args, **kwargs) f = lu.wrap_init(fun, kwargs) dyn_argnums = [i for i in range(len(args)) if i not in static_argnums] f, dyn_args = _argnums_partial(f, dyn_argnums, args) jaxtupletree_args, in_trees = unzip2(map(pytree_to_jaxtupletree, dyn_args)) _check_args(jaxtupletree_args) jaxtree_fun, out_tree = pytree_fun_to_jaxtupletree_fun(f, in_trees) jaxtupletree_out = xla.xla_call(jaxtree_fun, *jaxtupletree_args) return build_tree(out_tree(), jaxtupletree_out) f_jitted.__name__ = "jit({})".format(f_jitted.__name__) return f_jitted @contextmanager def disable_jit(): """Context manager that disables `jit`. For debugging purposes, it is useful to have a mechanism that disables `jit` everywhere in a block of code, namely the `disable_jit` decorator. Inside a `jit`-ted function the values flowing through traced code can be abstract (i.e., shaped arrays with an unknown values), instead of concrete (i.e., specific arrays with known values). For example: >>> @jax.jit >>> def f(x): >>> y = x *2 >>> print("Value of y is", y) >>> return y + 3 >>> >>> print(f(jax.numpy.array([1, 2, 3]))) Value of y is Traced [5 7 9] Here `y` has been abstracted by `jit` to a `ShapedArray`, which represents an array with a fixed shape and type but an arbitrary value. If we want to see a concrete values while debugging, we can use the `disable_jit` decorator, at the cost of slower code: >>> with jax.disable_jit(): >>> print(f(np.array([1, 2, 3]))) >>> Value of y is [2 4 6] [5 7 9] """ global _jit_is_disabled _jit_is_disabled, prev_val = True, _jit_is_disabled yield _jit_is_disabled = prev_val _jit_is_disabled = False def xla_computation(fun, static_argnums=()): def pv_like(x): aval = xla.abstractify(x) return pe.PartialVal((aval, core.unit)) wrapped = lu.wrap_init(fun) @wraps(fun) def computation_maker(*args, **kwargs): jax_args, in_trees = unzip2(map(pytree_to_jaxtupletree, args)) jaxtree_fun, out_tree = pytree_fun_to_jaxtupletree_fun(wrapped, in_trees) pvals = map(pv_like, jax_args) jaxpr, _, consts = pe.trace_to_jaxpr(jaxtree_fun, pvals, **kwargs) return xla.build_jaxpr(jaxpr, consts, *map(xla.abstractify, args)) return computation_maker def grad(fun, argnums=0, has_aux=False): """Creates a function which evaluates the gradient of `fun`. Args: fun: Function to be differentiated. Its arguments at positions specified by `argnums` should be arrays, scalars, or standard Python containers. It should return a scalar (which includes arrays with shape `()` but not arrays with shape `(1,)` etc.) argnums: Optional, integer or tuple of integers. Specifies which positional argument(s) to differentiate with respect to (default 0). has_aux: Optional, bool. Indicates whether `fun` returns a pair where the first element is considered the output of the mathematical function to be differentiated and the second element is auxiliary data. Default False. Returns: A function with the same arguments as `fun`, that evaluates the gradient of `fun`. If `argnums` is an integer then the gradient has the same shape and type as the positional argument indicated by that integer. If argnums is a tuple of integers, the gradient is a tuple of values with the same shapes and types as the corresponding arguments. If `has_aux` is True then a pair of (gradient, auxiliary_data) is returned. For example: >>> grad_tanh = jax.grad(jax.numpy.tanh) >>> grad_tanh(0.2) array(0.961043, dtype=float32) """ value_and_grad_f = value_and_grad(fun, argnums, has_aux=has_aux) docstr = ("Gradient of {fun} with respect to positional argument(s) " "{argnums}. Takes the same arguments as {fun} but returns the " "gradient, which has the same shape as the arguments at " "positions {argnums}.") @wraps(fun, docstr=docstr, argnums=argnums) def grad_f(*args, **kwargs): if not has_aux: _, g = value_and_grad_f(*args, **kwargs) return g else: (_, aux), g = value_and_grad_f(*args, **kwargs) return g, aux return grad_f def value_and_grad(fun, argnums=0, has_aux=False): """Creates a function which evaluates both `fun` and the gradient of `fun`. Args: fun: Function to be differentiated. Its arguments at positions specified by `argnums` should be arrays, scalars, or standard Python containers. It should return a scalar (which includes arrays with shape `()` but not arrays with shape `(1,)` etc.) argnums: Optional, integer or tuple of integers. Specifies which positional argument(s) to differentiate with respect to (default 0). has_aux: Optional, bool. Indicates whether `fun` returns a pair where the first element is considered the output of the mathematical function to be differentiated and the second element is auxiliary data. Default False. Returns: A function with the same arguments as `fun` that evaluates both `fun` and the gradient of `fun` and returns them as a pair (a two-element tuple). If `argnums` is an integer then the gradient has the same shape and type as the positional argument indicated by that integer. If argnums is a tuple of integers, the gradient is a tuple of values with the same shapes and types as the corresponding arguments. """ docstr = ("Value and gradient of {fun} with respect to positional " "argument(s) {argnums}. Takes the same arguments as {fun} but " "returns a two-element tuple where the first element is the value " "of {fun} and the second element is the gradient, which has the " "same shape as the arguments at positions {argnums}.") @wraps(fun, docstr=docstr, argnums=argnums) def value_and_grad_f(*args, **kwargs): f = lu.wrap_init(fun, kwargs) f_partial, dyn_args = _argnums_partial(f, argnums, args) if not has_aux: ans, vjp_py = vjp(f_partial, *dyn_args) else: ans, vjp_py, aux = vjp(f_partial, *dyn_args, has_aux=True) _check_scalar(ans) g = vjp_py(onp.ones((), onp.result_type(ans))) g = g[0] if isinstance(argnums, int) else g if not has_aux: return ans, g else: return (ans, aux), g return value_and_grad_f def jacfwd(fun, argnums=0): """Jacobian of `fun` evaluated column-by-column using forward-mode AD. Args: fun: Function whose Jacobian is to be computed. argnums: Optional, integer or tuple of integers. Specifies which positional argument(s) to differentiate with respect to (default `0`). Returns: A function with the same arguments as `fun`, that evaluates the Jacobian of `fun` using forward-mode automatic differentiation. >>> def f(x): >>> return jax.numpy.asarray( >>> [x[0], 5*x[2], 4*x[1]**2 - 2*x[2], x[2] * jax.numpy.sin(x[0])]) >>> jax.jacfwd(f)(np.array([1., 2., 3.])) array([[ 1. , 0. , 0. ], [ 0. , 0. , 5. ], [ 0. , 16. , -2. ], [ 1.6209068 , 0. , 0.84147096]], dtype=float32) """ def jacfun(*args, **kwargs): f = lu.wrap_init(fun, kwargs) f_partial, dyn_args = _argnums_partial(f, argnums, args) pushfwd = partial(jvp, f_partial, dyn_args) y, jac = vmap(pushfwd, out_axes=(None, -1))(_std_basis(dyn_args)) example_args = dyn_args[0] if isinstance(argnums, int) else dyn_args return tree_map(partial(_unravel_array_into_pytree, example_args, -1), jac) return jacfun def jacrev(fun, argnums=0): """Jacobian of `fun` evaluated row-by-row using reverse-mode AD. Args: fun: Function whose Jacobian is to be computed. argnums: Optional, integer or tuple of integers. Specifies which positional argument(s) to differentiate with respect to (default `0`). Returns: A function with the same arguments as `fun`, that evaluates the Jacobian of `fun` using reverse-mode automatic differentiation. >>> def f(x): >>> return jax.numpy.asarray( >>> [x[0], 5*x[2], 4*x[1]**2 - 2*x[2], x[2] * jax.numpy.sin(x[0])]) >>> jax.jacrev(f)(np.array([1., 2., 3.])) array([[ 1. , 0. , 0. ], [ 0. , 0. , 5. ], [ 0. , 16. , -2. ], [ 1.6209068 , 0. , 0.84147096]], dtype=float32) """ def jacfun(*args, **kwargs): f = lu.wrap_init(fun, kwargs) f_partial, dyn_args = _argnums_partial(f, argnums, args) y, pullback = vjp(f_partial, *dyn_args) jac = vmap(pullback)(_std_basis(y)) jac = jac[0] if isinstance(argnums, int) else jac example_args = dyn_args[0] if isinstance(argnums, int) else dyn_args jac = tree_map(partial(_unravel_array_into_pytree, y, 0), jac) return tree_transpose(tree_structure(example_args), tree_structure(y), jac) return jacfun jacobian = jacrev def hessian(fun, argnums=0): """Hessian of `fun`. Args: fun: Function whose Hessian is to be computed. argnums: Optional, integer or tuple of integers. Specifies which positional argument(s) to differentiate with respect to (default `0`). Returns: A function with the same arguments as `fun`, that evaluates the Hessian of `fun`. >>> g = lambda(x): x[0]**3 - 2*x[0]*x[1] - x[1]**6 >>> jax.hessian(g)(jax.numpy.array([1., 2.])) array([[ 6., -2.], [ -2., -480.]], dtype=float32) """ return jacfwd(jacrev(fun, argnums=argnums), argnums=argnums) def _std_basis(pytree): leaves, _ = tree_flatten(pytree) ndim = sum(map(onp.size, leaves)) # TODO(mattjj): use a symbolic identity matrix here return _unravel_array_into_pytree(pytree, 1, onp.eye(ndim)) def _unravel_array_into_pytree(pytree, axis, arr): leaves, treedef = tree_flatten(pytree) axis = axis % arr.ndim dtypes = map(_dtype, leaves) shapes = [arr.shape[:axis] + onp.shape(l) + arr.shape[axis+1:] for l in leaves] parts = _split(arr, onp.cumsum(map(onp.size, leaves[:-1])), axis) reshaped_parts = [onp.reshape(part.astype(dtype), shape) for part, dtype, shape in zip(parts, dtypes, shapes)] return tree_unflatten(treedef, reshaped_parts) def _split(x, indices, axis): if isinstance(x, onp.ndarray): return onp.split(x, indices, axis) else: return x.split(indices, axis) def _dtype(x): return canonicalize_dtype(onp.result_type(x)) def vmap(fun, in_axes=0, out_axes=0): """Vectorizing map. Creates a function which maps `fun` over additional axes. Args: fun: Function to be mapped over additional axes. in_axes: Specifies which input axes to map over. These may be integers, `None`, or (possibly nested) tuples of integers or `None`. out_axes: Specifies which output axes to map over. These may be integers, `None`, or (possibly nested) tuples of integers or `None`. Returns: Batched/vectorized version of `fun` with arguments that correspond to those of `fun`, but with extra array axes at positions indicated by `in_axes`, and a return value that corresponds to that of `fun`, but with extra array axes at positions indicated by `out_axes`. For example, we can implement a matrix-matrix product using a vector dot product: >>> vv = lambda x, y: np.vdot(x, y) # ([a], [a]) -> [] >>> mv = vmap(vv, (0, None), 0) # ([a,b], [b]) -> [a] >>> mm = vmap(mv, (None, 1), 1) # ([a,b], [b,c]) -> [a,c] (`[a,b]` indicates an array with shape (a,b)) """ docstr = ("Vectorized version of {fun}. Takes similar arguments as {fun} " "but with additional array axes over which {fun} is mapped.") if (not isinstance(in_axes, (list, tuple, type(None), int)) or not isinstance(out_axes, (list, tuple, type(None), int))): msg = ("vmap arguments in_axes and out_axes must each be an integer, None, " "or a (nested) tuple of those types, got {} and {} respectively.") raise TypeError(msg.format(type(in_axes), type(out_axes))) @wraps(fun, docstr=docstr) def batched_fun(*args, **kwargs): if not isinstance(fun, lu.WrappedFun): f = lu.wrap_init(fun, kwargs) in_axes_ = in_axes if isinstance(in_axes, (list, tuple)) else (in_axes,) * len(args) in_flat, in_trees = unzip2(map(pytree_to_jaxtupletree, args)) jaxtree_fun, out_tree = pytree_fun_to_jaxtupletree_fun(f, in_trees) out_flat = batching.batch(jaxtree_fun, in_flat, in_axes_, out_axes) return build_tree(out_tree(), out_flat) return batched_fun def pmap(fun, axis_name=None): """Set up SPMD function for JIT compilation and parallel execution with XLA.""" axis_name = _TempAxisName() if axis_name is None else axis_name @wraps(fun) def f_jitted(*args, **kwargs): leaves, _ = tree_flatten(args) axis_sizes = set(onp.shape(leaf)[0] for leaf in leaves) if len(axis_sizes) != 1: msg = "pmap requires all leading axes to have equal length, got {}." raise TypeError(msg.format(axis_sizes)) axis_size = axis_sizes.pop() jaxtupletree_args, in_trees = unzip2(map(pytree_to_jaxtupletree, args)) _check_args(jaxtupletree_args) f = lu.wrap_init(fun, kwargs) f, out_tree = pytree_fun_to_jaxtupletree_fun(f, in_trees) jaxtupletree_out = pxla.xla_pcall(f, *jaxtupletree_args, axis_name=axis_name, axis_size=axis_size) return build_tree(out_tree(), jaxtupletree_out) namestr = "pmap({}, axis_name={})".format f_jitted.__name__ = namestr(f_jitted.__name__, axis_name) return f_jitted def serial_pmap(fun, axis_name=None, in_axes=0, out_axes=0): """Vectorizing pseudo-map for single-program multiple-data (SPMD) functions.""" axis_name = _TempAxisName() if axis_name is None else axis_name def map_fun(*args, **kwargs): f = lu.wrap_init(fun, kwargs) in_axes_ = in_axes if isinstance(in_axes, (list, tuple)) else (in_axes,) * len(args) in_flat, in_trees = unzip2(map(pytree_to_jaxtupletree, args)) jaxtree_fun, out_tree = pytree_fun_to_jaxtupletree_fun(f, in_trees) out_flat = parallel.serial_pmap(jaxtree_fun, axis_name, in_flat, in_axes_, out_axes) return build_tree(out_tree(), out_flat) return map_fun class _TempAxisName(object): def __repr__(self): return ''.format(hex(id(self))) def papply(fun, axis_size, in_axes=0, out_axes=0): """Apply a function using parallel computation by sharding inputs.""" axis_name = parallel.newvar() def papply_fun(*args, **kwargs): f = lu.wrap_init(fun, kwargs) in_axes_ = in_axes if isinstance(in_axes, (list, tuple)) else (in_axes,) * len(args) args_flat, in_trees = unzip2(map(pytree_to_jaxtupletree, args)) jaxtree_fun, out_tree = pytree_fun_to_jaxtupletree_fun(f, in_trees) out_flat = parallel.papply(jaxtree_fun, axis_name, args_flat, axis_size, in_axes_, out_axes) return build_tree(out_tree(), out_flat) return papply_fun, axis_name def jvp(fun, primals, tangents): """Computes a (forward-mode) Jacobian-vector product of `fun`. Args: fun: Function to be differentiated. Its arguments should be arrays, scalars, or standard Python containers of arrays or scalars. It should return an array, scalar, or standard Python container of arrays or scalars. primals: The primal values at which the Jacobian of `fun` should be evaluated. Should be a tuple of arrays, scalar, or standard Python container thereof. The length of the tuple is equal to the number of positional parameters of `fun`. tangents: The tangent vector for which the Jacobian-vector product should be evaluated. Should be a tuple of arrays, scalar, or standard Python container thereof, with the same tree structure and array shapes as `primals`. Returns: A `(primals_out, tangents_out)` pair, where `primals_out` is `fun(*primals)`, and `tangents_out` is the Jacobian-vector product of `function` evaluated at `primals` with `tangents`. The `tangents_out` value has the same Python tree structure and shapes as `primals_out`. For example: >>> jax.jvp(jax.numpy.sin, (0.1,), (0.2,)) (array(0.09983342, dtype=float32), array(0.19900084, dtype=float32)) """ def trim_arg(primal, tangent): primal_jtuple, tree_def = pytree_to_jaxtupletree(primal) tangent_jtuple, tree_def_2 = pytree_to_jaxtupletree(tangent) assert tree_def == tree_def_2, (tree_def, tree_def_2) return primal_jtuple, tangent_jtuple, tree_def if not isinstance(fun, lu.WrappedFun): fun = lu.wrap_init(fun) ps_flat, ts_flat, in_trees = unzip3(map(trim_arg, primals, tangents)) jaxtree_fun, out_tree = pytree_fun_to_jaxtupletree_fun(fun, in_trees) out_primal, out_tangent = ad.jvp(jaxtree_fun).call_wrapped(ps_flat, ts_flat) return (build_tree(out_tree(), out_primal), build_tree(out_tree(), out_tangent)) def linearize(traceable, *primals): fun = lu.wrap_init(traceable) primals_flat, in_trees = unzip2(map(pytree_to_jaxtupletree, primals)) jaxtree_fun, out_tree = pytree_fun_to_jaxtupletree_fun(fun, in_trees) out_primal, out_pval, jaxpr, consts = ad.linearize(jaxtree_fun, *primals_flat) out_tree = out_tree() out_primal_py = build_tree(out_tree, out_primal) lifted_jvp = partial(lift_linearized, jaxpr, consts, (in_trees, out_tree), out_pval) return out_primal_py, lifted_jvp def lift_linearized(jaxpr, consts, io_tree, out_pval, *py_args): def fun(*args): primals = pack(args) # doesn't matter what these are-they'll be ignored tangents = pack(args) _, ans = eval_jaxpr(jaxpr, consts, (), primals, tangents) return pe.merge_pvals(ans, out_pval) return apply_jaxtree_fun(fun, io_tree, *py_args) def vjp(fun, *primals, **kwargs): """Compute a (reverse-mode) vector-Jacobian product of `fun`. `grad` is implemented as a special case of `vjp`. Args: fun: Function to be differentiated. Its arguments should be arrays, scalars, or standard Python containers of arrays or scalars. It should return an array, scalar, or standard Python container of arrays or scalars. primals: A sequence of primal values at which the Jacobian of `fun` should be evaluated. The length of `primals` should be equal to the number of positional parameters to `fun`. Each primal value should be a tuple of arrays, scalar, or standard Python containers thereof. has_aux: Optional, bool. Indicates whether `fun` returns a pair where the first element is considered the output of the mathematical function to be differentiated and the second element is auxiliary data. Default False. Returns: A `(primals_out, vjpfun)` pair, where `primals_out` is `fun(*primals)`. `vjpfun` is a function from a cotangent vector with the same shape as `primals_out` to a tuple of cotangent vectors with the same shape as `primals`, representing the vector-Jacobian product of `fun` evaluated at `primals`. >>> def f(x, y): >>> return jax.numpy.sin(x), jax.numpy.cos(y) >>> primals, g = jax.vjp(f, 0.5, 1.0) >>> g((-0.7, 0.3)) (array(-0.61430776, dtype=float32), array(-0.2524413, dtype=float32)) """ has_aux = kwargs.pop('has_aux', False) assert not kwargs if not isinstance(fun, lu.WrappedFun): fun = lu.wrap_init(fun) primals_flat, in_trees = unzip2(map(pytree_to_jaxtupletree, primals)) _check_args(primals_flat) jaxtree_fun, out_tree = pytree_fun_to_jaxtupletree_fun(fun, in_trees) if not has_aux: out_primal, out_vjp = ad.vjp(jaxtree_fun, primals_flat) else: out_primal, out_vjp, aux = ad.vjp(jaxtree_fun, primals_flat, has_aux=True) out_tree = out_tree() if has_aux: out_tree, aux_tree = out_tree.children out_primal_py = build_tree(out_tree, out_primal) ct_in_trees = [out_tree] ct_out_tree = PyTreeDef(node_types[tuple], None, in_trees) def out_vjp_packed(cotangent_in): return out_vjp(cotangent_in) vjp_py = partial(apply_jaxtree_fun, out_vjp_packed, (ct_in_trees, ct_out_tree)) if not has_aux: return out_primal_py, vjp_py else: return out_primal_py, vjp_py, build_tree(aux_tree, aux) def trace_to_jaxpr(traceable, py_pvals, **kwargs): fun = lu.wrap_init(traceable) pvals, in_trees = unzip2(map(tree_to_pval_tuples, py_pvals)) jaxtree_fun, out_tree = pytree_fun_to_jaxtupletree_fun(fun, in_trees) jaxpr, out_pval, consts = pe.trace_to_jaxpr(jaxtree_fun, pvals, **kwargs) return jaxpr, consts, out_pval, (in_trees, out_tree()) def lift_jaxpr(jaxpr, consts, io_tree, pvals, py_args): def fun(*args): ans = eval_jaxpr(jaxpr, consts, (), *args) return pe.merge_pvals(ans, pvals) return apply_jaxtree_fun(fun, io_tree, *py_args) def make_jaxpr(fun): """Adapts `fun` to return its `jaxpr` program representation. Args: fun: The function whose `jaxpr` is to be computed. Its positional arguments and return value should be arrays, scalars, or standard Python containers (tuple/list/dict) thereof. Returns: A wrapped version of `fun`, set up to return a `jaxpr`. A `jaxpr` is JAX's intermediate representation for program traces. The `jaxpr` language is based on the simply-typed first-order lambda calculus with let-bindings. `make_jaxpr` adapts a function to return its `jaxpr`, which we can inspect to understand what JAX is doing internally. The `jaxpr` returned is a trace of `fun` abstracted to `ShapedArray` level. Other levels of abstraction exist internally. We do not describe the semantics of the `jaxpr` language in detail here, but instead give a few examples. >>> def f(x): return jax.numpy.sin(jax.numpy.cos(x)) >>> f(3.0) array(-0.83602184, dtype=float32) >>> jax.make_jaxpr(f)(3.0) { lambda ; ; a. let b = cos a c = sin b in c } >>> jax.make_jaxpr(jax.grad(f))(3.0) { lambda b ; ; a. let c = pack a (d) = id c e = cos d f = cos e g = mul b f h = neg g i = sin d j = mul h i k = pack j (l) = id k in l } """ def pv_like(x): aval = xla.abstractify(x) return pe.PartialVal((aval, core.unit)) wrapped = lu.wrap_init(fun) @wraps(fun) def jaxpr_maker(*args, **kwargs): jax_args, in_trees = unzip2(map(pytree_to_jaxtupletree, args)) jaxtree_fun, out_tree = pytree_fun_to_jaxtupletree_fun(wrapped, in_trees) pvals = map(pv_like, jax_args) jaxpr, _, _ = pe.trace_to_jaxpr(jaxtree_fun, pvals, **kwargs) return jaxpr jaxpr_maker.__name__ = "make_jaxpr({})".format(jaxpr_maker.__name__) return jaxpr_maker tree_to_pval_tuples = partial(process_pytree, pe.pack_pvals) device_put = jit(lambda x: x) device_get_array = lambda x: x.copy() if type(x) is xla.DeviceArray else x device_get = partial(tree_map, device_get_array) replicate = lambda x: pmap(lambda _: x)(onp.arange(device_count())) unreplicate = lambda x: tree_map(op.itemgetter(0), x) def _argnums_partial(f, dyn_argnums, args): if isinstance(dyn_argnums, int): dyn_argnums = (dyn_argnums,) else: dyn_argnums = tuple(dyn_argnums) fixed_args = tuple([None if i in dyn_argnums else WrapHashably(arg) for i, arg in enumerate(args)]) dyn_args = tuple(args[i] for i in dyn_argnums) return _argnums_partial_(f, dyn_argnums, fixed_args), dyn_args @lu.transformation def _argnums_partial_(dyn_argnums, fixed_args, *dyn_args): args = [None if arg is None else arg.val for arg in fixed_args] for i, arg in zip(dyn_argnums, dyn_args): args[i] = arg ans = yield args yield ans def _check_args(args): for arg in args: if not (isinstance(arg, core.Tracer) or core.valid_jaxtype(arg)): raise TypeError("Argument '{}' of type {} is not a valid JAX type" .format(arg, type(arg))) def _check_scalar(x): msg = "Gradient only defined for scalar-output functions. Output was: {}".format try: aval = core.get_aval(x) if not (isinstance(aval, ShapedArray) and aval.shape == ()): raise TypeError(msg(x)) except TypeError: raise TypeError(msg(x)) def _primitive(fun): name = getattr(fun, '__name__', '') fun_p = core.Primitive(name) fun_p.def_impl(fun) # generic transformation implementations that rely on traceability of `fun` fun_p.def_abstract_eval(partial(pe.abstract_eval_fun, fun)) xla.translations[fun_p] = partial(xla.lower_fun, fun) ad.primitive_jvps[fun_p] = partial(jvp, fun) # TODO(mattjj): batching @wraps(fun) def traceable(*args, **kwargs): # TODO(mattjj): pytrees to jaxtupletrees return fun_p.bind(*args, **kwargs) traceable.primitive = fun_p return traceable def _elementwise_std_basis(pytree): leaves, _ = tree_flatten(pytree) arity = len(leaves) dims = map(onp.size, leaves) # TODO(mattjj): use symbolic constants basis_array = onp.stack( [onp.concatenate([onp.ones(dims[j]) if i == j else onp.zeros(dims[j]) for j in range(arity)]) for i in range(arity)]) return _unravel_array_into_pytree(pytree, 1, basis_array) def jarrett(fun): new_fun = _primitive(fun) def elementwise_jvp(primals, tangents): pushfwd = partial(jvp, fun, primals) y, jacs = vmap(pushfwd, out_axes=(None, 0))(_elementwise_std_basis(tangents)) flat_tangents, _ = tree_flatten(tangents) out_tangent = sum([t * jac for t, jac in zip(flat_tangents, jacs)]) return y, out_tangent ad.primitive_jvps[new_fun.primitive] = elementwise_jvp return new_fun