# Copyright 2019 The JAX Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations import functools from functools import partial import importlib import itertools import operator import jaxlib.mlir.ir as ir from jaxlib import xla_client from .hlo_helpers import custom_call for cuda_module_name in [".cuda", "jax_cuda12_plugin"]: try: _cuda_prng = importlib.import_module( f"{cuda_module_name}._prng", package="jaxlib" ) except ImportError: _cuda_prng = None else: break if _cuda_prng: for _name, _value in _cuda_prng.registrations().items(): # TODO(b/338022728): remove after 6 months, always api_version=1 api_version = 1 if "_ffi" in _name else 0 xla_client.register_custom_call_target(_name, _value, platform="CUDA", api_version=api_version) for rocm_module_name in [".rocm", "jax_rocm60_plugin"]: try: _hip_prng = importlib.import_module( f"{rocm_module_name}._prng", package="jaxlib" ) except ImportError: _hip_prng = None else: break if _hip_prng: for _name, _value in _hip_prng.registrations().items(): # TODO(b/338022728): remove after 6 months, always api_version=1 api_version = 1 if "_ffi" in _name else 0 xla_client.register_custom_call_target(_name, _value, platform="ROCM", api_version=api_version) _prod = lambda xs: functools.reduce(operator.mul, xs, 1) def _threefry2x32_lowering(prng, platform: str, keys, data, length: int | ir.Value | None = None, output_shape: ir.Value | None = None, forward_compatibility_mode: bool = False): """ThreeFry2x32 kernel for GPU. In presence of dynamic shapes, `length` is an `ir.Value` and `output_shape` is a 1D tensor describing the shape of the two outputs. """ del forward_compatibility_mode assert len(keys) == 2, keys assert len(data) == 2, data assert (ir.RankedTensorType(keys[0].type).element_type == ir.IntegerType.get_unsigned(32)), keys[0].type typ = keys[0].type dims = ir.RankedTensorType(typ).shape for x in itertools.chain(keys, data): assert x.type == typ, (x.type, typ) ndims = len(dims) layout = tuple(range(ndims - 1, -1, -1)) operand_layouts = [layout] * 4 operands = [keys[0], keys[1], data[0], data[1]] opaque = {} # Use if not forward_compatibility_mode to trigger the FFI (v4). if isinstance(length, int): result_shapes = None else: assert output_shape is not None # We also need to pass separately the shapes of the outputs. result_shapes = [output_shape, output_shape] custom_call_target = f"{platform}_threefry2x32_ffi" return custom_call( custom_call_target, api_version=4, result_types=[typ, typ], operands=operands, backend_config=opaque, operand_layouts=operand_layouts, result_layouts=[layout] * 2, result_shapes=result_shapes).results cuda_threefry2x32 = partial(_threefry2x32_lowering, _cuda_prng, "cu") rocm_threefry2x32 = partial(_threefry2x32_lowering, _hip_prng, "hip")