# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from jax import lax from jax._src.numpy import lax_numpy as jnp from jax import jit from jax._src.numpy.util import _wraps from jax._src.numpy.linalg import eigvals as _eigvals def _to_inexact_type(type): return type if jnp.issubdtype(type, jnp.inexact) else jnp.float_ def _promote_inexact(arr): return lax.convert_element_type(arr, _to_inexact_type(arr.dtype)) @jit def _roots_no_zeros(p): # assume: p does not have leading zeros and has length > 1 p = _promote_inexact(p) # build companion matrix and find its eigenvalues (the roots) A = jnp.diag(jnp.ones((p.size - 2,), p.dtype), -1) A = A.at[0, :].set(-p[1:] / p[0]) roots = _eigvals(A) return roots @jit def _nonzero_range(arr): # return start and end s.t. arr[:start] = 0 = arr[end:] padding zeros is_zero = arr == 0 start = jnp.argmin(is_zero) end = is_zero.size - jnp.argmin(is_zero[::-1]) return start, end @_wraps(np.roots, lax_description="""\ If the input polynomial coefficients of length n do not start with zero, the polynomial is of degree n - 1 leading to n - 1 roots. If the coefficients do have leading zeros, the polynomial they define has a smaller degree and the number of roots (and thus the output shape) is value dependent. The general implementation can therefore not be transformed with jit. If the coefficients are guaranteed to have no leading zeros, use the keyword argument `strip_zeros=False` to get a jit-compatible variant: >>> from functools import partial >>> roots_unsafe = jax.jit(partial(jnp.roots, strip_zeros=False)) >>> roots_unsafe([1, 2]) # ok DeviceArray([-2.+0.j], dtype=complex64) >>> roots_unsafe([0, 1, 2]) # problem DeviceArray([nan+nanj, nan+nanj], dtype=complex64) >>> jnp.roots([0, 1, 2]) # use the no-jit version instead DeviceArray([-2.+0.j], dtype=complex64) """) def roots(p, *, strip_zeros=True): # ported from https://github.com/numpy/numpy/blob/v1.17.0/numpy/lib/polynomial.py#L168-L251 p = jnp.atleast_1d(p) if p.ndim != 1: raise ValueError("Input must be a rank-1 array.") # strip_zeros=False is unsafe because leading zeros aren't removed if not strip_zeros: if p.size > 1: return _roots_no_zeros(p) else: return jnp.array([]) if jnp.all(p == 0): return jnp.array([]) # factor out trivial roots start, end = _nonzero_range(p) # number of trailing zeros = number of roots at 0 trailing_zeros = p.size - end # strip leading and trailing zeros p = p[start:end] if p.size < 2: return jnp.zeros(trailing_zeros, p.dtype) else: roots = _roots_no_zeros(p) # combine roots and zero roots roots = jnp.hstack((roots, jnp.zeros(trailing_zeros, p.dtype))) return roots