# Copyright 2018 The JAX Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pyformat: disable from __future__ import annotations import collections from collections.abc import Callable, Generator, Iterable, Sequence from concurrent.futures import ThreadPoolExecutor from contextlib import ExitStack, contextmanager import datetime import functools from functools import partial import inspect import logging import math import os import platform import re import sys import tempfile import textwrap import threading import time from typing import Any, TextIO import unittest import zlib from absl.testing import absltest from absl.testing import parameterized import jax from jax import lax from jax._src import api from jax._src import compilation_cache from jax._src import config from jax._src import core from jax._src import deprecations from jax._src import dispatch from jax._src import dtypes as _dtypes from jax._src import lib as _jaxlib from jax._src import monitoring from jax._src import test_warning_util from jax._src.typing import ArrayLike, DTypeLike from jax._src import xla_bridge from jax._src import util from jax._src import mesh as mesh_lib from jax._src.cloud_tpu_init import running_in_cloud_tpu_vm from jax._src.interpreters import mlir from jax._src.lib import jaxlib_extension_version from jax._src.numpy.util import promote_dtypes, promote_dtypes_inexact from jax._src.public_test_util import ( # noqa: F401 _assert_numpy_allclose, _check_dtypes_match, _default_tolerance, _dtype, check_close, check_grads, check_jvp, check_vjp, default_gradient_tolerance, default_tolerance, rand_like, tolerance, ToleranceDict) from jax._src.util import unzip2 from jax.tree_util import tree_all, tree_flatten, tree_map, tree_unflatten import numpy as np import numpy.random as npr # This submodule includes private test utilities that are not exported to # jax.test_util. Functionality appearing here is for internal use only, and # may be changed or removed at any time and without any deprecation cycle. _TEST_DUT = config.string_flag( 'jax_test_dut', '', help= 'Describes the device under test in case special consideration is required.' ) NUM_GENERATED_CASES = config.int_flag( 'jax_num_generated_cases', int(os.getenv('JAX_NUM_GENERATED_CASES', '10')), help='Number of generated cases to test') _MAX_CASES_SAMPLING_RETRIES = config.int_flag( 'max_cases_sampling_retries', int(os.getenv('JAX_MAX_CASES_SAMPLING_RETRIES', '100')), 'Number of times a failed test sample should be retried. ' 'When an unseen case cannot be generated in this many trials, the ' 'sampling process is terminated.' ) SKIP_SLOW_TESTS = config.bool_flag( 'jax_skip_slow_tests', config.bool_env('JAX_SKIP_SLOW_TESTS', False), help='Skip tests marked as slow (> 5 sec).' ) _TEST_TARGETS = config.string_flag( 'test_targets', os.getenv('JAX_TEST_TARGETS', ''), 'Regular expression specifying which tests to run, called via re.search on ' 'the test name. If empty or unspecified, run all tests.' ) _EXCLUDE_TEST_TARGETS = config.string_flag( 'exclude_test_targets', os.getenv('JAX_EXCLUDE_TEST_TARGETS', ''), 'Regular expression specifying which tests NOT to run, called via re.search ' 'on the test name. If empty or unspecified, run all tests.' ) TEST_WITH_PERSISTENT_COMPILATION_CACHE = config.bool_flag( 'jax_test_with_persistent_compilation_cache', config.bool_env('JAX_TEST_WITH_PERSISTENT_COMPILATION_CACHE', False), help='If enabled, the persistent compilation cache will be enabled for all ' 'test cases. This can be used to increase compilation cache coverage.') HYPOTHESIS_PROFILE = config.string_flag( 'hypothesis_profile', os.getenv('JAX_HYPOTHESIS_PROFILE', 'deterministic'), help=('Select the hypothesis profile to use for testing. Available values: ' 'deterministic, interactive'), ) TEST_NUM_THREADS = config.int_flag( 'jax_test_num_threads', int(os.getenv('JAX_TEST_NUM_THREADS', '0')), help='Number of threads to use for running tests. 0 means run everything ' 'in the main thread. Using > 1 thread is experimental.' ) # We sanitize test names to ensure they work with "unitttest -k" and # "pytest -k" test filtering. pytest accepts '[' and ']' but unittest -k # does not. We replace sequences of problematic characters with a single '_'. kSanitizeNameRE = re.compile(r"[ \"'\[\](){}<>=,._]+") def sanitize_test_name(s: str) -> str: return kSanitizeNameRE.sub("_", s) def num_float_bits(dtype: DTypeLike) -> int: return _dtypes.finfo(_dtypes.canonicalize_dtype(dtype)).bits def to_default_dtype(arr: ArrayLike) -> np.ndarray: """Convert a value to an array with JAX's default dtype. This is generally used for type conversions of values returned by numpy functions, to make their dtypes take into account the state of the ``jax_enable_x64`` and ``jax_default_dtype_bits`` flags. """ arr = np.asarray(arr) dtype = _dtypes._default_types.get(arr.dtype.kind) return arr.astype(_dtypes.canonicalize_dtype(dtype)) if dtype else arr def with_jax_dtype_defaults(func: Callable[..., Any], use_defaults: bool = True): """Return a version of a function with outputs that match JAX's default dtypes. This is generally used to wrap numpy functions within tests, in order to make their default output dtypes match those of corresponding JAX functions, taking into account the state of the ``jax_enable_x64`` and ``jax_default_dtype_bits`` flags. Args: use_defaults : whether to convert any given output to the default dtype. May be a single boolean, in which case it specifies the conversion for all outputs, or may be a pytree with the same structure as the function output. """ @functools.wraps(func) def wrapped(*args, **kwargs): result = func(*args, **kwargs) if isinstance(use_defaults, bool): return tree_map(to_default_dtype, result) if use_defaults else result else: f = lambda arr, use_default: to_default_dtype(arr) if use_default else arr return tree_map(f, result, use_defaults) return wrapped def is_sequence(x: Any) -> bool: try: iter(x) except TypeError: return False else: return True def _normalize_tolerance(tol: int | float | ToleranceDict | None) -> ToleranceDict: tol = tol or 0 if isinstance(tol, dict): return {np.dtype(k): v for k, v in tol.items()} else: return dict.fromkeys(_default_tolerance, tol) def join_tolerance( tol1: int | float | ToleranceDict | None, tol2: int | float | ToleranceDict | None) -> ToleranceDict: tol1 = _normalize_tolerance(tol1) tol2 = _normalize_tolerance(tol2) out = tol1 for k, v in tol2.items(): out[k] = max(v, tol1.get(k, 0)) return out def check_eq(xs: Any, ys: Any, err_msg: str = '') -> None: assert_close = partial(_assert_numpy_allclose, err_msg=err_msg) tree_all(tree_map(assert_close, xs, ys)) @contextmanager def _capture_output(fp: TextIO) -> Generator[Callable[[], str], None, None]: """Context manager to capture all output written to a given file object. Unlike ``contextlib.redirect_stdout``, this context manager works for any file object and also for both pure Python and native code. Example:: with capture_output(sys.stdout) as get_output: print(42) print("Captured": get_output()) Yields: A function returning the captured output. The function must be called *after* the context is no longer active. """ # ``None`` means nothing has not been captured yet. captured = None def get_output() -> str: if captured is None: raise ValueError("get_output() called while the context is active.") return captured with tempfile.NamedTemporaryFile(mode="w+", encoding='utf-8') as f: original_fd = os.dup(fp.fileno()) os.dup2(f.fileno(), fp.fileno()) try: yield get_output finally: # Python also has its own buffers, make sure everything is flushed. fp.flush() os.fsync(fp.fileno()) f.seek(0) captured = f.read() os.dup2(original_fd, fp.fileno()) capture_stdout = partial(_capture_output, sys.stdout) capture_stderr = partial(_capture_output, sys.stderr) class EventThreadLocalState(threading.local): def __init__(self): self.counts = {} # Mapping from string name to count. self.nested_device_put_count = 0 # Number of recursive calls to device_put # Per-function counts self.infer_params_fun_counts = None self.lower_jaxpr_to_fun_counts = None self.collect_lowered_jaxprs = None thread_local_state = EventThreadLocalState() def event_listener(name, *args): counts = thread_local_state.counts counts[name] = counts.get(name, 0) + 1 # device_put handlers might call `dispatch.device_put` (e.g. on an # underlying payload or several). We only want to count these # recursive puts once, so we skip counting more than the outermost # one in such a call stack. if name == "batched_device_put_start": if thread_local_state.nested_device_put_count == 0: counts["batched_device_put"] = counts.get("batched_device_put", 0) + 1 thread_local_state.nested_device_put_count += 1 elif name == "batched_device_put_end": thread_local_state.nested_device_put_count -= 1 elif name == "pjit._infer_params_impl": # For infer_params, we collect per-function data, but only while a context # manager is active. infer_counts = thread_local_state.infer_params_fun_counts if infer_counts is not None: (fun,) = args infer_counts[fun] += 1 elif name == "lower_jaxpr_to_fun": # For infer_params, we collect per-function data, but only while a context # manager is active. lower_counts = thread_local_state.lower_jaxpr_to_fun_counts if lower_counts is not None: (fun,) = args lower_counts[fun] += 1 elif name == "mlir.collect_lowered_jaxprs": collection = thread_local_state.collect_lowered_jaxprs if collection is not None: collection.append(args) util.test_event_listener = event_listener def count_events(event): "Returns a context-manager that yields a function that counts a test event." @contextmanager def count_event(): before = thread_local_state.counts.get(event, 0) yield lambda: thread_local_state.counts.get(event, 0) - before return count_event count_device_put = count_events("batched_device_put") count_device_put_fast_path_hit = count_events("batched_copy_array") count_pjit_cpp_cache_miss = count_events("pjit_lower") count_jit_tracing_cache_miss = count_events("create_pjit_jaxpr") count_aot_jit_cpp_cache_miss = count_events("stages_compiled_call") count_jit_and_pmap_lowerings = count_events("lower_jaxpr_to_module") count_jit_compilation_cache_miss = count_events("pxla_cached_compilation") count_jax_array_shard_arg_calls = count_events("_array_shard_arg") @contextmanager def count_primitive_compiles(): dispatch.xla_primitive_callable.cache_clear() count = [-1] try: yield lambda: count[0] finally: count[0] = dispatch.xla_primitive_callable.cache_info().misses @contextmanager def count_jit_infer_params_cache_miss(): assert thread_local_state.infer_params_fun_counts is None counts = collections.Counter() thread_local_state.infer_params_fun_counts = counts try: yield counts finally: thread_local_state.infer_params_fun_counts = None @contextmanager def count_subjaxpr_to_hlo_conversion(fun_name): assert thread_local_state.lower_jaxpr_to_fun_counts is None counts = collections.Counter() thread_local_state.lower_jaxpr_to_fun_counts = counts try: yield lambda: counts[fun_name] finally: thread_local_state.lower_jaxpr_to_fun_counts = None @contextmanager def collect_lowered_jaxprs() -> Generator[Sequence[tuple[core.ClosedJaxpr, mlir.ir.Module]]]: """ Collects all the pairs of (jaxpr, mlir_module) that are lowered. """ assert thread_local_state.collect_lowered_jaxprs is None collection: list[tuple[core.ClosedJaxpr, mlir.ir.Module]] = [] thread_local_state.collect_lowered_jaxprs = collection try: yield collection finally: thread_local_state.collect_lowered_jaxprs = None @contextmanager def assert_num_jit_and_pmap_compilations(times): with count_jit_and_pmap_lowerings() as count: yield if count() != times: raise AssertionError(f"Expected exactly {times} XLA compilations, " f"but executed {count()}") def jaxlib_version() -> tuple[int, ...]: return _jaxlib.version def device_under_test(): return _TEST_DUT.value or xla_bridge.get_backend().platform def supported_dtypes(): if device_under_test() == "tpu": types = {np.bool_, _dtypes.int4, np.int8, np.int16, np.int32, _dtypes.uint4, np.uint8, np.uint16, np.uint32, _dtypes.bfloat16, np.float16, np.float32, np.complex64, _dtypes.float8_e4m3fn, _dtypes.float8_e4m3b11fnuz, _dtypes.float8_e5m2} if jaxlib_extension_version < 327: types -= {_dtypes.int4, _dtypes.uint4} elif device_under_test() == "gpu": types = {np.bool_, np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64, _dtypes.bfloat16, np.float16, np.float32, np.float64, np.complex64, np.complex128, _dtypes.float8_e4m3fn, _dtypes.float8_e5m2} elif device_under_test() == "METAL": types = {np.int32, np.uint32, np.float32} else: types = {np.bool_, _dtypes.int4, np.int8, np.int16, np.int32, np.int64, _dtypes.uint4, np.uint8, np.uint16, np.uint32, np.uint64, _dtypes.bfloat16, np.float16, np.float32, np.float64, np.complex64, np.complex128} if jaxlib_extension_version < 327: types -= {_dtypes.int4, _dtypes.uint4} if not config.enable_x64.value: types -= {np.uint64, np.int64, np.float64, np.complex128} return types def is_device_rocm(): return 'rocm' in xla_bridge.get_backend().platform_version def is_device_cuda(): return 'cuda' in xla_bridge.get_backend().platform_version def is_cloud_tpu(): return running_in_cloud_tpu_vm # Returns True if it is not cloud TPU. If it is cloud TPU, returns True if it is # built at least `date``. # TODO(b/327203806): after libtpu adds a XLA version and the oldest support # libtpu contains the XLA version, remove using built time to skip tests. def if_cloud_tpu_at_least(year: int, month: int, day: int): date = datetime.date(year, month, day) if not is_cloud_tpu(): return True # The format of Cloud TPU platform_version is like: # PJRT C API # TFRT TPU v2 # Built on Oct 30 2023 03:04:42 (1698660263) cl/577737722 platform_version = xla_bridge.get_backend().platform_version.split('\n')[-1] results = re.findall(r'\(.*?\)', platform_version) if len(results) != 1: return True build_date = date.fromtimestamp(int(results[0][1:-1])) return build_date >= date def pjrt_c_api_version_at_least(major_version: int, minor_version: int): pjrt_c_api_versions = xla_bridge.backend_pjrt_c_api_version() if pjrt_c_api_versions is None: return True return pjrt_c_api_versions >= (major_version, minor_version) def get_tpu_version() -> int: if device_under_test() != "tpu": raise ValueError("Device is not TPU") kind = jax.devices()[0].device_kind match = re.match(r"TPU[^\d]*(\d+)", kind) if match is None: raise ValueError(f"Device kind {kind} is not supported") return int(match.group(1)) def is_device_tpu_at_least(version: int) -> bool: if device_under_test() != "tpu": return False return get_tpu_version() >= version def is_device_tpu(version: int | None = None, variant: str = "") -> bool: if device_under_test() != "tpu": return False if version is None: return True device_kind = jax.devices()[0].device_kind expected_version = f"v{version}{variant}" # Special case v5e until the name is updated in device_kind if expected_version == "v5e": return "v5 lite" in device_kind elif expected_version == "v6e": return "v6 lite" in device_kind return expected_version in device_kind def is_cuda_compute_capability_at_least(capability: str) -> bool: if not is_device_cuda(): return False d, *_ = jax.local_devices(backend="gpu") target = tuple(int(x) for x in capability.split(".")) current = tuple(int(x) for x in d.compute_capability.split(".")) return current >= target def is_cuda_compute_capability_equal(capability: str) -> bool: if not is_device_cuda(): return False d, *_ = jax.local_devices(backend="gpu") target = tuple(int(x) for x in capability.split(".")) current = tuple(int(x) for x in d.compute_capability.split(".")) return current == target class CudaArchSpecificTest: """A mixin with methods allowing to skip arch specific tests.""" def skip_unless_sm90a(self): if not is_cuda_compute_capability_equal("9.0"): self.skipTest("Only works on GPU with capability sm90a") def skip_unless_sm100a(self): if not is_cuda_compute_capability_equal("10.0"): self.skipTest("Only works on GPU with capability sm100a") def _get_device_tags(): """returns a set of tags defined for the device under test""" if is_device_rocm(): device_tags = {device_under_test(), "rocm"} elif is_device_cuda(): device_tags = {device_under_test(), "cuda"} elif device_under_test() == "METAL": device_tags = {device_under_test(), "gpu"} else: device_tags = {device_under_test()} return device_tags def test_device_matches(device_types: Iterable[str]) -> bool: assert not isinstance( device_types, str ), 'device_types should be a list of strings' tags = _get_device_tags() for device_type in device_types: assert isinstance(device_type, str), device_type if device_type in tags: return True return False test_device_matches.__test__ = False # This isn't a test case, pytest. def _device_filter(predicate): def skip(test_method): @functools.wraps(test_method) def test_method_wrapper(self, *args, **kwargs): device_tags = _get_device_tags() if not predicate(): test_name = getattr(test_method, '__name__', '[unknown test]') raise unittest.SkipTest( f"{test_name} not supported on device with tags {device_tags}.") return test_method(self, *args, **kwargs) return test_method_wrapper return skip def skip_on_devices(*disabled_devices): """A decorator for test methods to skip the test on certain devices.""" return _device_filter(lambda: not test_device_matches(disabled_devices)) def run_on_devices(*enabled_devices): """A decorator for test methods to run the test only on certain devices.""" return _device_filter(lambda: test_device_matches(enabled_devices)) def device_supports_buffer_donation(): """A decorator for test methods to run the test only on devices that support buffer donation.""" return _device_filter( lambda: test_device_matches(mlir._platforms_with_donation) ) def request_cpu_devices(nr_devices: int): """Requests at least `nr_devices` CPU devices. request_cpu_devices should be called at the top-level of a test module before main() runs. It is not guaranteed that the number of CPU devices will be exactly `nr_devices`: it may be more or less, depending on how exactly the test is invoked. Test cases that require a specific number of devices should skip themselves if that number is not met. """ if xla_bridge.num_cpu_devices.value < nr_devices: xla_bridge.get_backend.cache_clear() # Don't raise an error for `request_cpu_devices` because we initialize the # backend in OSS during collecting tests in pytest via `device_under_test`. try: config.update("jax_num_cpu_devices", nr_devices) except RuntimeError: pass def skip_on_flag(flag_name, skip_value): """A decorator for test methods to skip the test when flags are set.""" def skip(test_method): # pylint: disable=missing-docstring @functools.wraps(test_method) def test_method_wrapper(self, *args, **kwargs): flag_value = config._read(flag_name) if flag_value == skip_value: test_name = getattr(test_method, '__name__', '[unknown test]') raise unittest.SkipTest( f"{test_name} not supported when FLAGS.{flag_name} is {flag_value}") return test_method(self, *args, **kwargs) return test_method_wrapper return skip def pytest_mark_if_available(marker: str): """A decorator for test classes or methods to pytest.mark if installed.""" def wrap(func_or_class): try: import pytest except ImportError: return func_or_class return getattr(pytest.mark, marker)(func_or_class) return wrap def is_running_under_pytest(): return "pytest" in sys.modules def skip_under_pytest(reason: str): """A decorator for test methods to skip the test when run under pytest.""" reason = "Running under pytest: " + reason def skip(test_method): return unittest.skipIf(is_running_under_pytest(), reason)(test_method) return skip def format_test_name_suffix(opname, shapes, dtypes): arg_descriptions = (format_shape_dtype_string(shape, dtype) for shape, dtype in zip(shapes, dtypes)) return '{}_{}'.format(opname.capitalize(), '_'.join(arg_descriptions)) # We use special symbols, represented as singleton objects, to distinguish # between NumPy scalars, Python scalars, and 0-D arrays. class ScalarShape: def __len__(self): return 0 def __getitem__(self, i): raise IndexError(f"index {i} out of range.") class _NumpyScalar(ScalarShape): pass class _PythonScalar(ScalarShape): pass NUMPY_SCALAR_SHAPE = _NumpyScalar() PYTHON_SCALAR_SHAPE = _PythonScalar() # Some shape combinations don't make sense. def is_valid_shape(shape, dtype): if shape == PYTHON_SCALAR_SHAPE: return dtype == np.dtype(type(np.array(0, dtype=dtype).item())) return True def _dims_of_shape(shape): """Converts `shape` to a tuple of dimensions.""" if type(shape) in (list, tuple): return shape elif isinstance(shape, ScalarShape): return () elif np.ndim(shape) == 0: return (shape,) else: raise TypeError(type(shape)) def _cast_to_shape(value, shape, dtype): """Casts `value` to the correct Python type for `shape` and `dtype`.""" if shape is NUMPY_SCALAR_SHAPE: # explicitly cast to NumPy scalar in case `value` is a Python scalar. return np.dtype(dtype).type(value) elif shape is PYTHON_SCALAR_SHAPE: # explicitly cast to Python scalar via https://stackoverflow.com/a/11389998 return np.asarray(value).item() elif type(shape) in (list, tuple): assert np.shape(value) == tuple(shape) return value elif np.ndim(shape) == 0: assert np.shape(value) == (shape,) return value else: raise TypeError(type(shape)) def dtype_str(dtype): return np.dtype(dtype).name def format_shape_dtype_string(shape, dtype): if isinstance(shape, np.ndarray): return f'{dtype_str(dtype)}[{shape}]' elif isinstance(shape, list): shape = tuple(shape) return _format_shape_dtype_string(shape, dtype) @functools.lru_cache(maxsize=64) def _format_shape_dtype_string(shape, dtype): if shape is NUMPY_SCALAR_SHAPE: return dtype_str(dtype) elif shape is PYTHON_SCALAR_SHAPE: return 'py' + dtype_str(dtype) elif type(shape) is tuple: shapestr = ','.join(str(dim) for dim in shape) return f'{dtype_str(dtype)}[{shapestr}]' elif type(shape) is int: return f'{dtype_str(dtype)}[{shape},]' else: raise TypeError(type(shape)) def _rand_dtype(rand, shape, dtype, scale=1., post=lambda x: x): """Produce random values given shape, dtype, scale, and post-processor. Args: rand: a function for producing random values of a given shape, e.g. a bound version of either np.RandomState.randn or np.RandomState.rand. shape: a shape value as a tuple of positive integers. dtype: a numpy dtype. scale: optional, a multiplicative scale for the random values (default 1). post: optional, a callable for post-processing the random values (default identity). Returns: An ndarray of the given shape and dtype using random values based on a call to rand but scaled, converted to the appropriate dtype, and post-processed. """ if _dtypes.issubdtype(dtype, np.unsignedinteger): r = lambda: np.asarray(scale * abs(rand(*_dims_of_shape(shape)))).astype(dtype) else: r = lambda: np.asarray(scale * rand(*_dims_of_shape(shape))).astype(dtype) if _dtypes.issubdtype(dtype, np.complexfloating): vals = r() + 1.0j * r() else: vals = r() return _cast_to_shape(np.asarray(post(vals), dtype), shape, dtype) def rand_fullrange(rng, standardize_nans=False): """Random numbers that span the full range of available bits.""" def gen(shape, dtype, post=lambda x: x): dtype = np.dtype(dtype) size = dtype.itemsize * math.prod(_dims_of_shape(shape)) vals = rng.randint(0, np.iinfo(np.uint8).max, size=size, dtype=np.uint8) vals = post(vals).view(dtype) if shape is PYTHON_SCALAR_SHAPE: # Sampling from the full range of the largest available uint type # leads to overflows in this case; sample from signed ints instead. if dtype == np.uint64: vals = vals.astype(np.int64) elif dtype == np.uint32 and not config.enable_x64.value: vals = vals.astype(np.int32) vals = vals.reshape(shape) # Non-standard NaNs cause errors in numpy equality assertions. if standardize_nans and np.issubdtype(dtype, np.floating): vals[np.isnan(vals)] = np.nan return _cast_to_shape(vals, shape, dtype) return gen def rand_default(rng, scale=3): return partial(_rand_dtype, rng.randn, scale=scale) def rand_nonzero(rng): post = lambda x: np.where(x == 0, np.array(1, dtype=x.dtype), x) return partial(_rand_dtype, rng.randn, scale=3, post=post) def rand_positive(rng): post = lambda x: x + 1 return partial(_rand_dtype, rng.rand, scale=2, post=post) def rand_small(rng): return partial(_rand_dtype, rng.randn, scale=1e-3) def rand_not_small(rng, offset=10.): post = lambda x: x + np.where(x > 0, offset, -offset) return partial(_rand_dtype, rng.randn, scale=3., post=post) def rand_small_positive(rng): return partial(_rand_dtype, rng.rand, scale=2e-5) def rand_uniform(rng, low=0.0, high=1.0): assert low < high post = lambda x: x * (high - low) + low return partial(_rand_dtype, rng.rand, post=post) def rand_some_equal(rng): def post(x): x_ravel = x.ravel() if len(x_ravel) == 0: return x flips = rng.rand(*np.shape(x)) < 0.5 return np.where(flips, x_ravel[0], x) return partial(_rand_dtype, rng.randn, scale=100., post=post) def rand_some_inf(rng): """Return a random sampler that produces infinities in floating types.""" base_rand = rand_default(rng) # TODO: Complex numbers are not correctly tested # If blocks should be switched in order, and relevant tests should be fixed def rand(shape, dtype): """The random sampler function.""" if not _dtypes.issubdtype(dtype, np.floating): # only float types have inf return base_rand(shape, dtype) if _dtypes.issubdtype(dtype, np.complexfloating): base_dtype = np.real(np.array(0, dtype=dtype)).dtype out = (rand(shape, base_dtype) + np.array(1j, dtype) * rand(shape, base_dtype)) return _cast_to_shape(out, shape, dtype) dims = _dims_of_shape(shape) posinf_flips = rng.rand(*dims) < 0.1 neginf_flips = rng.rand(*dims) < 0.1 vals = base_rand(shape, dtype) vals = np.where(posinf_flips, np.array(np.inf, dtype=dtype), vals) vals = np.where(neginf_flips, np.array(-np.inf, dtype=dtype), vals) return _cast_to_shape(np.asarray(vals, dtype=dtype), shape, dtype) return rand def rand_some_nan(rng): """Return a random sampler that produces nans in floating types.""" base_rand = rand_default(rng) def rand(shape, dtype): """The random sampler function.""" if _dtypes.issubdtype(dtype, np.complexfloating): base_dtype = np.real(np.array(0, dtype=dtype)).dtype out = (rand(shape, base_dtype) + np.array(1j, dtype) * rand(shape, base_dtype)) return _cast_to_shape(out, shape, dtype) if not _dtypes.issubdtype(dtype, np.floating): # only float types have inf return base_rand(shape, dtype) dims = _dims_of_shape(shape) r = rng.rand(*dims) nan_flips = r < 0.1 neg_nan_flips = r < 0.05 vals = base_rand(shape, dtype) vals = np.where(nan_flips, np.array(np.nan, dtype=dtype), vals) vals = np.where(neg_nan_flips, np.array(-np.nan, dtype=dtype), vals) return _cast_to_shape(np.asarray(vals, dtype=dtype), shape, dtype) return rand def rand_some_inf_and_nan(rng): """Return a random sampler that produces infinities in floating types.""" base_rand = rand_default(rng) # TODO: Complex numbers are not correctly tested # If blocks should be switched in order, and relevant tests should be fixed def rand(shape, dtype): """The random sampler function.""" if not _dtypes.issubdtype(dtype, np.floating): # only float types have inf return base_rand(shape, dtype) if _dtypes.issubdtype(dtype, np.complexfloating): base_dtype = np.real(np.array(0, dtype=dtype)).dtype out = (rand(shape, base_dtype) + np.array(1j, dtype) * rand(shape, base_dtype)) return _cast_to_shape(out, shape, dtype) dims = _dims_of_shape(shape) posinf_flips = rng.rand(*dims) < 0.1 neginf_flips = rng.rand(*dims) < 0.1 nan_flips = rng.rand(*dims) < 0.1 vals = base_rand(shape, dtype) vals = np.where(posinf_flips, np.array(np.inf, dtype=dtype), vals) vals = np.where(neginf_flips, np.array(-np.inf, dtype=dtype), vals) vals = np.where(nan_flips, np.array(np.nan, dtype=dtype), vals) return _cast_to_shape(np.asarray(vals, dtype=dtype), shape, dtype) return rand # TODO(mattjj): doesn't handle complex types def rand_some_zero(rng): """Return a random sampler that produces some zeros.""" base_rand = rand_default(rng) def rand(shape, dtype): """The random sampler function.""" dims = _dims_of_shape(shape) zeros = rng.rand(*dims) < 0.5 vals = base_rand(shape, dtype) vals = np.where(zeros, np.array(0, dtype=dtype), vals) return _cast_to_shape(np.asarray(vals, dtype=dtype), shape, dtype) return rand def rand_int(rng, low=0, high=None): def fn(shape, dtype): nonlocal high gen_dtype = dtype if np.issubdtype(dtype, np.integer) else np.int64 if low == 0 and high is None: if np.issubdtype(dtype, np.integer): high = np.iinfo(dtype).max else: raise ValueError("rand_int requires an explicit `high` value for " "non-integer types.") return rng.randint(low, high=high, size=shape, dtype=gen_dtype).astype(dtype) return fn def rand_unique_int(rng, high=None): def fn(shape, dtype): return rng.choice(np.arange(high or math.prod(shape), dtype=dtype), size=shape, replace=False) return fn def rand_indices_unique_along_axis(rng): """Sample an array of given shape containing indices up to dim (exclusive), such that the indices are unique along the given axis. Optionally, convert some of the resulting indices to negative indices.""" def fn(dim, shape, axis, allow_negative=True): batch_size = math.prod(shape[:axis] + shape[axis:][1:]) idx = [ rng.choice(dim, size=shape[axis], replace=False) for _ in range(batch_size) ] idx = np.array(idx).reshape(batch_size, shape[axis]) idx = idx.reshape(shape[:axis] + shape[axis:][1:] + (shape[axis],)) idx = np.moveaxis(idx, -1, axis) # assert that indices are unique along the given axis count = partial(np.bincount, minlength=dim) assert (np.apply_along_axis(count, axis, idx) <= 1).all() if allow_negative: mask = rng.choice([False, True], idx.shape) idx[mask] -= dim return idx return fn def rand_bool(rng): def generator(shape, dtype): return _cast_to_shape( np.asarray(rng.rand(*_dims_of_shape(shape)) < 0.5, dtype=dtype), shape, dtype) return generator def check_raises(thunk, err_type, msg): try: thunk() assert False except err_type as e: assert str(e).startswith(msg), f"\n{e}\n\n{msg}\n" def check_raises_regexp(thunk, err_type, pattern): try: thunk() assert False except err_type as e: assert re.match(pattern, str(e)), f"{e}\n\n{pattern}\n" def iter_eqns(jaxpr): # TODO(necula): why doesn't this search in params? yield from jaxpr.eqns for subjaxpr in core.subjaxprs(jaxpr): yield from iter_eqns(subjaxpr) def assert_dot_precision(expected_precision, fun, *args): jaxpr = api.make_jaxpr(fun)(*args) precisions = [eqn.params['precision'] for eqn in iter_eqns(jaxpr.jaxpr) if eqn.primitive == lax.dot_general_p] for precision in precisions: msg = f"Unexpected precision: {expected_precision} != {precision}" if isinstance(precision, tuple): assert precision[0] == expected_precision, msg assert precision[1] == expected_precision, msg else: assert precision == expected_precision, msg def assert_dot_preferred_element_type(expected, fun, *args, **kwargs): jaxpr = api.make_jaxpr(partial(fun, **kwargs))(*args) pref_eltypes = [eqn.params['preferred_element_type'] for eqn in iter_eqns(jaxpr.jaxpr) if eqn.primitive == lax.dot_general_p] for pref_eltype in pref_eltypes: msg = f"Unexpected preferred_element_type: {expected} != {pref_eltype}" assert expected == pref_eltype, msg def cases_from_gens(*gens): sizes = [1, 3, 10] cases_per_size = int(NUM_GENERATED_CASES.value / len(sizes)) + 1 for size in sizes: for i in range(cases_per_size): yield (f'_{size}_{i}',) + tuple(gen(size) for gen in gens) def named_cases_from_sampler(gen): seen = set() retries = 0 rng = npr.RandomState(42) def choose_one(x): if not isinstance(x, (list, tuple)): x = list(x) return [x[rng.randint(len(x))]] while (len(seen) < NUM_GENERATED_CASES.value and retries < _MAX_CASES_SAMPLING_RETRIES.value): retries += 1 cases = list(gen(choose_one)) if not cases: continue if len(cases) > 1: raise RuntimeError("Generator is expected to only return a single case when sampling") case = cases[0] if case["testcase_name"] in seen: continue retries = 0 seen.add(case["testcase_name"]) yield case # Random sampling for every parameterized test is expensive. Do it once and # cache the result. @functools.cache def _choice(n, m): rng = np.random.RandomState(42) return rng.choice(n, size=m, replace=False) def sample_product_testcases(*args, **kw): """Non-decorator form of sample_product.""" args = [list(arg) for arg in args] kw = [(k, list(v)) for k, v in kw.items()] n = math.prod(len(a) for a in args) * math.prod(len(v) for _, v in kw) testcases = [] for i in _choice(n, min(n, NUM_GENERATED_CASES.value)): testcase = {} for a in args: testcase.update(a[i % len(a)]) i //= len(a) for k, v in kw: testcase[k] = v[i % len(v)] i //= len(v) testcases.append(testcase) return testcases def sample_product(*args, **kw): """Decorator that samples from a cartesian product of test cases. Similar to absltest.parameterized.product(), except that it samples from the cartesian product rather than returning the whole thing. Arguments: *args: each positional argument is a list of dictionaries. The entries in a dictionary correspond to name=value argument pairs; one dictionary will be chosen for each test case. This allows multiple parameters to be correlated. **kw: each keyword argument is a list of values. One value will be chosen for each test case. """ return parameterized.parameters(*sample_product_testcases(*args, **kw)) # We use a reader-writer lock to protect test execution. Tests that may run in # parallel acquire a read lock; tests that are not thread-safe acquire a write # lock. _test_rwlock = util.Mutex() def _run_one_test(test: unittest.TestCase, result: ThreadSafeTestResult): if getattr(test.__class__, "thread_hostile", False): _test_rwlock.writer_lock() try: test(result) # type: ignore finally: _test_rwlock.writer_unlock() else: _test_rwlock.reader_lock() try: test(result) # type: ignore finally: _test_rwlock.reader_unlock() @contextmanager def thread_unsafe_test(): """Decorator for tests that are not thread-safe. Note: this decorator (naturally) only applies to what it wraps, not to, say, code in separate setUp() or tearDown() methods. """ if TEST_NUM_THREADS.value <= 0: yield return _test_rwlock.assert_reader_held() _test_rwlock.reader_unlock() _test_rwlock.writer_lock() try: yield finally: _test_rwlock.writer_unlock() _test_rwlock.reader_lock() def thread_unsafe_test_class(): "Decorator that marks a TestCase class as thread-hostile." def f(klass): assert issubclass(klass, unittest.TestCase), type(klass) klass.thread_hostile = True return klass return f class ThreadSafeTestResult: """ Wraps a TestResult to make it thread safe. We do this by accumulating API calls and applying them in a batch under a lock at the conclusion of each test case. We duck type instead of inheriting from TestResult because we aren't actually a perfect implementation of TestResult, and would rather get a loud error for things we haven't implemented. """ def __init__(self, lock: threading.Lock, result: unittest.TestResult): self.lock = lock self.test_result = result self.actions: list[Callable] = [] def startTest(self, test: unittest.TestCase): del test self.start_time = time.time() def stopTest(self, test: unittest.TestCase): stop_time = time.time() with self.lock: # If test_result is an ABSL _TextAndXMLTestResult we override how it gets # the time. This affects the timing that shows up in the XML output # consumed by CI. time_getter = getattr(self.test_result, "time_getter", None) try: self.test_result.time_getter = lambda: self.start_time self.test_result.startTest(test) for callback in self.actions: callback() self.test_result.time_getter = lambda: stop_time self.test_result.stopTest(test) finally: if time_getter is not None: self.test_result.time_getter = time_getter def addSuccess(self, test: unittest.TestCase): self.actions.append(lambda: self.test_result.addSuccess(test)) def addSkip(self, test: unittest.TestCase, reason: str): self.actions.append(lambda: self.test_result.addSkip(test, reason)) def addError(self, test: unittest.TestCase, err): self.actions.append(lambda: self.test_result.addError(test, err)) def addFailure(self, test: unittest.TestCase, err): self.actions.append(lambda: self.test_result.addFailure(test, err)) def addExpectedFailure(self, test: unittest.TestCase, err): self.actions.append(lambda: self.test_result.addExpectedFailure(test, err)) def addDuration(self, test: unittest.TestCase, elapsed): self.actions.append(lambda: self.test_result.addDuration(test, elapsed)) class JaxTestSuite(unittest.TestSuite): """Runs tests in parallel using threads if TEST_NUM_THREADS is > 1. Caution: this test suite does not run setUpClass or setUpModule methods if thread parallelism is enabled. """ def __init__(self, suite: unittest.TestSuite): super().__init__(list(suite)) def run(self, result: unittest.TestResult, debug: bool = False) -> unittest.TestResult: if TEST_NUM_THREADS.value <= 0: return super().run(result) test_warning_util.install_threadsafe_warning_handlers() executor = ThreadPoolExecutor(TEST_NUM_THREADS.value) lock = threading.Lock() futures = [] def run_test(test): "Recursively runs tests in a test suite or test case." if isinstance(test, unittest.TestSuite): for subtest in test: run_test(subtest) else: test_result = ThreadSafeTestResult(lock, result) futures.append(executor.submit(_run_one_test, test, test_result)) with executor: run_test(self) for future in futures: future.result() return result class JaxTestLoader(absltest.TestLoader): suiteClass = JaxTestSuite def getTestCaseNames(self, testCaseClass): names = super().getTestCaseNames(testCaseClass) if _TEST_TARGETS.value: pattern = re.compile(_TEST_TARGETS.value) names = [name for name in names if pattern.search(f"{testCaseClass.__name__}.{name}")] if _EXCLUDE_TEST_TARGETS.value: pattern = re.compile(_EXCLUDE_TEST_TARGETS.value) names = [name for name in names if not pattern.search(f"{testCaseClass.__name__}.{name}")] return names def with_config(**kwds): """Test case decorator for subclasses of JaxTestCase""" def decorator(cls): assert inspect.isclass(cls) and issubclass(cls, JaxTestCase), "@with_config can only wrap JaxTestCase class definitions." cls._default_thread_local_config = {} for b in cls.__bases__: cls._default_thread_local_config.update(b._default_thread_local_config) cls._default_thread_local_config.update(kwds) return cls return decorator def with_global_config(**kwds): """Test case decorator for subclasses of JaxTestCase""" def decorator(cls): assert inspect.isclass(cls) and issubclass(cls, JaxTestCase), "@with_config can only wrap JaxTestCase class definitions." cls._default_global_config = {} for b in cls.__bases__: cls._default_global_config.update(b._default_global_config) cls._default_global_config.update(kwds) return cls return decorator def promote_like_jnp(fun, inexact=False): """Decorator that promotes the arguments of `fun` to `jnp.result_type(*args)`. jnp and np have different type promotion semantics; this decorator allows tests make an np reference implementation act more like a jnp implementation. """ _promote = promote_dtypes_inexact if inexact else promote_dtypes def wrapper(*args, **kw): flat_args, tree = tree_flatten(args) args = tree_unflatten(tree, _promote(*flat_args)) return fun(*args, **kw) return wrapper @contextmanager def global_config_context(**kwds): original_config = {} try: for key, value in kwds.items(): original_config[key] = config._read(key) config.update(key, value) yield finally: for key, value in original_config.items(): config.update(key, value) @contextmanager def thread_local_config_context(**kwds): stack = ExitStack() for config_name, value in kwds.items(): stack.enter_context(config.config_states[config_name](value)) try: yield finally: stack.close() class NotPresent: def __repr__(self): return "" @contextmanager def assert_global_configs_unchanged(): starting_cache = compilation_cache._cache starting_config = jax.config.values.copy() yield ending_config = jax.config.values ending_cache = compilation_cache._cache if starting_config != ending_config: differing = {k: (starting_config.get(k, NotPresent()), ending_config.get(k, NotPresent())) for k in (starting_config.keys() | ending_config.keys()) if (k not in starting_config or k not in ending_config or starting_config[k] != ending_config[k])} raise AssertionError(f"Test changed global config values. Differing values are: {differing}") if starting_cache is not ending_cache: raise AssertionError( f"Test changed the compilation cache object: before test it was " f"{starting_cache}, now it is {ending_cache}" ) class JaxTestCase(parameterized.TestCase): """Base class for JAX tests including numerical checks and boilerplate.""" _default_global_config: dict[str, Any] = {} _default_thread_local_config = { 'jax_enable_checks': True, 'jax_numpy_dtype_promotion': 'strict', 'jax_numpy_rank_promotion': 'raise', 'jax_traceback_filtering': 'off', 'jax_legacy_prng_key': 'error', } _context_stack: ExitStack | None = None def setUp(self): super().setUp() self.enter_context(assert_global_configs_unchanged()) # We use the adler32 hash for two reasons. # a) it is deterministic run to run, unlike hash() which is randomized. # b) it returns values in int32 range, which RandomState requires. self._rng = npr.RandomState(zlib.adler32(self._testMethodName.encode())) # TODO(phawkins): use TestCase.enterContext once Python 3.11 is the minimum # version. self._context_stack = ExitStack() self.addCleanup(self._context_stack.close) stack = self._context_stack stack.enter_context(global_config_context(**self._default_global_config)) for config_name, value in self._default_thread_local_config.items(): stack.enter_context(jax._src.config.config_states[config_name](value)) if TEST_WITH_PERSISTENT_COMPILATION_CACHE.value: assert TEST_NUM_THREADS.value <= 1, "Persistent compilation cache is not thread-safe." stack.enter_context(config.enable_compilation_cache(True)) stack.enter_context(config.raise_persistent_cache_errors(True)) stack.enter_context(config.persistent_cache_min_compile_time_secs(0)) stack.enter_context(config.persistent_cache_min_entry_size_bytes(0)) tmp_dir = stack.enter_context(tempfile.TemporaryDirectory()) stack.enter_context(config.compilation_cache_dir(tmp_dir)) stack.callback(compilation_cache.reset_cache) def tearDown(self) -> None: assert core.reset_trace_state() super().tearDown() def rng(self): return self._rng def assertDeprecationWarnsOrRaises(self, deprecation_id: str, message: str): """Assert warning or error, depending on deprecation state. For use with functions that call :func:`jax._src.deprecations.warn`. """ if deprecations.is_accelerated(deprecation_id): return self.assertRaisesRegex(ValueError, message) else: return self.assertWarnsRegex(DeprecationWarning, message) def assertArraysEqual(self, actual, desired, *, check_dtypes=True, err_msg='', allow_object_dtype=False, verbose=True): """Assert that x and y arrays are exactly equal.""" if check_dtypes: self.assertDtypesMatch(actual, desired) actual = np.asarray(actual) desired = np.asarray(desired) if (not allow_object_dtype) and (actual.dtype == object or desired.dtype == object): # See https://github.com/jax-ml/jax/issues/17867 raise TypeError( "assertArraysEqual may be poorly behaved when np.asarray casts to dtype=object. " "If comparing PRNG keys, consider random_test.KeyArrayTest.assertKeysEqual. " "If comparing collections of arrays, consider using assertAllClose. " "To let this test proceed anyway, pass allow_object_dtype=True.") # Work around https://github.com/numpy/numpy/issues/18992 with np.errstate(over='ignore'): np.testing.assert_array_equal(actual, desired, err_msg=err_msg, verbose=verbose) def assertArraysAllClose(self, actual, desired, *, check_dtypes=True, atol=None, rtol=None, err_msg=''): """Assert that actual and desired are close (up to numerical tolerances).""" self.assertEqual(actual.shape, desired.shape) atol = max(tolerance(_dtype(actual), atol), tolerance(_dtype(desired), atol)) rtol = max(tolerance(_dtype(actual), rtol), tolerance(_dtype(desired), rtol)) _assert_numpy_allclose(actual, desired, atol=atol, rtol=rtol, err_msg=err_msg) if check_dtypes: self.assertDtypesMatch(actual, desired) def assertDtypesMatch(self, actual, desired, *, canonicalize_dtypes=True): if not config.enable_x64.value and canonicalize_dtypes: self.assertEqual(_dtypes.canonicalize_dtype(_dtype(actual), allow_extended_dtype=True), _dtypes.canonicalize_dtype(_dtype(desired), allow_extended_dtype=True)) else: self.assertEqual(_dtype(actual), _dtype(desired)) def assertAllClose(self, actual, desired, *, check_dtypes=True, atol=None, rtol=None, canonicalize_dtypes=True, err_msg=''): """Assert that actual and desired, either arrays or nested tuples/lists, are close.""" if isinstance(actual, dict): self.assertIsInstance(desired, dict) self.assertEqual(set(actual.keys()), set(desired.keys())) for k in actual.keys(): self.assertAllClose(actual[k], desired[k], check_dtypes=check_dtypes, atol=atol, rtol=rtol, canonicalize_dtypes=canonicalize_dtypes, err_msg=err_msg) elif is_sequence(actual) and not hasattr(actual, '__array__'): self.assertTrue(is_sequence(desired) and not hasattr(desired, '__array__')) self.assertEqual(len(actual), len(desired)) for actual_elt, desired_elt in zip(actual, desired): self.assertAllClose(actual_elt, desired_elt, check_dtypes=check_dtypes, atol=atol, rtol=rtol, canonicalize_dtypes=canonicalize_dtypes, err_msg=err_msg) elif hasattr(actual, '__array__') or np.isscalar(actual): self.assertTrue(hasattr(desired, '__array__') or np.isscalar(desired)) if check_dtypes: self.assertDtypesMatch(actual, desired, canonicalize_dtypes=canonicalize_dtypes) actual = np.asarray(actual) desired = np.asarray(desired) self.assertArraysAllClose(actual, desired, check_dtypes=False, atol=atol, rtol=rtol, err_msg=err_msg) elif actual == desired: return else: raise TypeError((type(actual), type(desired))) def assertMultiLineStrippedEqual(self, expected, what): """Asserts two strings are equal, after dedenting and stripping each line.""" expected = textwrap.dedent(expected) what = textwrap.dedent(what) ignore_space_re = re.compile(r'\s*\n\s*') expected_clean = re.sub(ignore_space_re, '\n', expected.strip()) what_clean = re.sub(ignore_space_re, '\n', what.strip()) if what_clean != expected_clean: # Print it so we can copy-and-paste it into the test print(f"Found\n{what}\n") self.assertMultiLineEqual(expected_clean, what_clean, msg=f"Found\n{what}\nExpecting\n{expected}") @contextmanager def assertNoWarnings(self): with test_warning_util.raise_on_warnings(): yield # We replace assertWarns and assertWarnsRegex with functions that use the # thread-safe warning utilities. Unlike the unittest versions these only # function as context managers. @contextmanager def assertWarns(self, warning, *, msg=None): with test_warning_util.record_warnings() as ws: yield for w in ws: if not isinstance(w.message, warning): continue if msg is not None and msg not in str(w.message): continue return self.fail(f"Expected warning not found {warning}:'{msg}', got " f"{ws}") @contextmanager def assertWarnsRegex(self, warning, regex): if regex is not None: regex = re.compile(regex) with test_warning_util.record_warnings() as ws: yield for w in ws: if not isinstance(w.message, warning): continue if regex is not None and not regex.search(str(w.message)): continue return self.fail(f"Expected warning not found {warning}:'{regex}', got " f"{ws}") def _CompileAndCheck(self, fun, args_maker, *, check_dtypes=True, tol=None, rtol=None, atol=None, check_cache_misses=True): """Helper method for running JAX compilation and allclose assertions.""" args = args_maker() def wrapped_fun(*args): self.assertTrue(python_should_be_executing) return fun(*args) python_should_be_executing = True python_ans = fun(*args) python_shapes = tree_map(lambda x: np.shape(x), python_ans) np_shapes = tree_map(lambda x: np.shape(np.asarray(x)), python_ans) self.assertEqual(python_shapes, np_shapes) cache_misses = dispatch.xla_primitive_callable.cache_info().misses python_ans = fun(*args) if check_cache_misses and TEST_NUM_THREADS.value <= 1: self.assertEqual( cache_misses, dispatch.xla_primitive_callable.cache_info().misses, "Compilation detected during second call of {} in op-by-op " "mode.".format(fun)) cfun = api.jit(wrapped_fun) python_should_be_executing = True monitored_ans = cfun(*args) python_should_be_executing = False compiled_ans = cfun(*args) self.assertAllClose(monitored_ans, python_ans, check_dtypes=check_dtypes, atol=atol or tol, rtol=rtol or tol) self.assertAllClose(compiled_ans, python_ans, check_dtypes=check_dtypes, atol=atol or tol, rtol=rtol or tol) args = args_maker() python_should_be_executing = True python_ans = fun(*args) python_should_be_executing = False compiled_ans = cfun(*args) self.assertAllClose(compiled_ans, python_ans, check_dtypes=check_dtypes, atol=atol or tol, rtol=rtol or tol) def _CheckAgainstNumpy(self, numpy_reference_op, lax_op, args_maker, check_dtypes=True, tol=None, atol=None, rtol=None, canonicalize_dtypes=True): args = args_maker() lax_ans = lax_op(*args) numpy_ans = numpy_reference_op(*args) self.assertAllClose(lax_ans, numpy_ans, check_dtypes=check_dtypes, atol=atol or tol, rtol=rtol or tol, canonicalize_dtypes=canonicalize_dtypes) _PJIT_IMPLEMENTATION = jax.jit _PJIT_IMPLEMENTATION._name = "jit" _NOOP_JIT_IMPLEMENTATION = lambda x, *args, **kwargs: x _NOOP_JIT_IMPLEMENTATION._name = "noop" JIT_IMPLEMENTATION = ( _PJIT_IMPLEMENTATION, _NOOP_JIT_IMPLEMENTATION, ) class BufferDonationTestCase(JaxTestCase): def assertDeleted(self, x): self.assertTrue(x.is_deleted()) def assertNotDeleted(self, x): self.assertFalse(x.is_deleted()) ignore_warning = test_warning_util.ignore_warning # -------------------- Mesh parametrization helpers -------------------- MeshSpec = list[tuple[str, int]] @contextmanager def with_mesh(named_shape: MeshSpec) -> Generator[None, None, None]: """Test utility for setting up meshes given mesh data from `schedules`.""" # This is similar to the `with_mesh` function above, but isn't a decorator. axis_names, shape = unzip2(named_shape) size = math.prod(shape) local_devices = list(jax.local_devices()) if len(local_devices) < size: raise unittest.SkipTest(f"Test requires {size} local devices") mesh_devices = np.array(local_devices[:size]).reshape(shape) # type: ignore with jax.sharding.Mesh(mesh_devices, axis_names): yield def with_mesh_from_kwargs(f): return lambda *args, **kwargs: with_mesh(kwargs['mesh'])(f)(*args, **kwargs) def with_and_without_mesh(f): return parameterized.named_parameters( {"testcase_name": name, "mesh": mesh, "axis_resources": axis_resources} for name, mesh, axis_resources in ( ('', (), ()), ('Mesh', (('x', 2),), (('i', 'x'),)) ))(with_mesh_from_kwargs(f)) def with_user_mesh(sizes, names, axis_types=None): axis_types = ((mesh_lib.AxisType.Explicit,) * len(names) if axis_types is None else axis_types) def decorator(fn): def mesh_fn(*args, **kwargs): mesh = create_mesh(sizes, names, axis_types=axis_types) with jax.sharding.use_mesh(mesh): return fn(*args, **kwargs, mesh=mesh) return mesh_fn return decorator def create_mesh(mesh_shape, axis_names, iota_order=False, axis_types=None): size = math.prod(mesh_shape) if len(jax.devices()) < size: raise unittest.SkipTest(f"Test requires {size} global devices.") if iota_order: devices = sorted(jax.devices(), key=lambda d: d.id) mesh_devices = np.array(devices[:size]).reshape(mesh_shape) return jax.sharding.Mesh(mesh_devices, axis_names, axis_types=axis_types) else: return jax.make_mesh(mesh_shape, axis_names, axis_types=axis_types) class _cached_property: null = object() def __init__(self, method): self._method = method self._value = self.null def __get__(self, obj, cls): if self._value is self.null: self._value = self._method(obj) return self._value class _LazyDtypes: """A class that unifies lists of supported dtypes. These could be module-level constants, but device_under_test() is not always known at import time, so we need to define these lists lazily. """ def supported(self, dtypes): supported = supported_dtypes() return type(dtypes)(d for d in dtypes if d in supported) @_cached_property def custom_floats(self): float_dtypes = [ _dtypes.bfloat16, _dtypes.float8_e4m3b11fnuz, _dtypes.float8_e4m3fn, _dtypes.float8_e4m3fnuz, _dtypes.float8_e5m2, _dtypes.float8_e5m2fnuz, _dtypes.float8_e3m4, _dtypes.float8_e4m3, _dtypes.float8_e8m0fnu, _dtypes.float4_e2m1fn, ] return self.supported(float_dtypes) @_cached_property def floating(self): return self.supported([np.float32, np.float64]) @_cached_property def all_floating(self): return self.supported([_dtypes.bfloat16, np.float16, np.float32, np.float64]) @_cached_property def integer(self): return self.supported([np.int32, np.int64]) @_cached_property def all_integer(self): return self.supported([np.int8, np.int16, np.int32, np.int64]) @_cached_property def unsigned(self): return self.supported([np.uint32, np.uint64]) @_cached_property def all_unsigned(self): return self.supported([np.uint8, np.uint16, np.uint32, np.uint64]) @_cached_property def complex(self): return self.supported([np.complex64, np.complex128]) @_cached_property def boolean(self): return self.supported([np.bool_]) @_cached_property def inexact(self): return self.floating + self.complex @_cached_property def all_inexact(self): return self.all_floating + self.complex @_cached_property def numeric(self): return self.floating + self.integer + self.unsigned + self.complex @_cached_property def all(self): return (self.all_floating + self.all_integer + self.all_unsigned + self.complex + self.boolean) dtypes = _LazyDtypes() def strict_promotion_if_dtypes_match(dtypes): """ Context manager to enable strict promotion if all dtypes match, and enable standard dtype promotion otherwise. """ if all(dtype == dtypes[0] for dtype in dtypes): return jax.numpy_dtype_promotion('strict') return jax.numpy_dtype_promotion('standard') _version_regex = re.compile(r"([0-9]+(?:\.[0-9]+)*)(?:(rc|dev).*)?") def parse_version(v: str) -> tuple[int, ...]: m = _version_regex.match(v) if m is None: raise ValueError(f"Unable to parse version '{v}'") return tuple(int(x) for x in m.group(1).split('.')) def numpy_version(): return parse_version(np.__version__) def parameterized_filterable(*, kwargs: Sequence[dict[str, Any]], testcase_name: Callable[[dict[str, Any]], str] | None = None, one_containing: str | None = None, ): """Decorator for named parameterized tests, with filtering support. Works like ``parameterized.named_parameters``, except that it sanitizes the test names so that we can use ``pytest -k`` and ``python test.py -k`` test filtering. This means, e.g., that many special characters are replaced with `_`. It also supports the ``one_containing`` arg to select one of the tests, while leaving the name unchanged, which is useful for IDEs to be able to easily pick up the enclosing test name. Usage: @jtu.parameterized_filterable( # one_containing="a_4", [dict(a=4, b=5), dict(a=5, b=4)]) def test_my_test(self, *, a, b): ... Args: kwargs: Each entry is a set of kwargs to be passed to the test function. testcase_name: Optionally, a function to construct the testcase_name from one kwargs dict. If not given then ``kwargs`` may contain ``testcase_name`` and otherwise the test case name is constructed as ``str(kwarg)``. We sanitize the test names to work with -k test filters. See ``sanitize_test_name``. one_containing: If given, then leaves the test name unchanged, and use only one of the ``kwargs`` whose `testcase_name` includes ``one_containing``. """ # Ensure that all kwargs contain a testcase_name kwargs_with_testcase_name: Sequence[dict[str, Any]] if testcase_name is not None: kwargs_with_testcase_name = [ dict(testcase_name=sanitize_test_name(str(testcase_name(kw))), **kw) for kw in kwargs] else: for kw in kwargs: testcase_name = kw.get("testcase_name") if testcase_name is None: testcase_name = "_".join(f"{k}={kw[k]}" # type: ignore for k in sorted(kw.keys())) kw["testcase_name"] = sanitize_test_name(testcase_name) # type: ignore kwargs_with_testcase_name = kwargs if one_containing is not None: filtered = tuple(kw for kw in kwargs_with_testcase_name if one_containing in kw["testcase_name"]) assert filtered, ( f"No testcase_name contains '{one_containing}'. " "The testcase_name values are\n " + "\n ".join(kw["testcase_name"] for kw in kwargs_with_testcase_name)) kw = filtered[0] kw["testcase_name"] = "" return parameterized.named_parameters([kw]) else: return parameterized.named_parameters(*kwargs_with_testcase_name) @contextmanager def register_event_duration_listener(callback): """Manages registering/unregistering an event duration listener callback.""" try: monitoring.register_event_duration_secs_listener(callback) yield finally: monitoring._unregister_event_duration_listener_by_callback(callback) @contextmanager def set_env(**kwargs): """Context manager to temporarily set/unset one or more environment variables. Caution: setting environment variables is not thread-safe. If you use this utility, you must annotate your test using, e.g., @thread_unsafe_test() or @thread_unsafe_test_class(). Examples: >>> import os >>> os.environ['my_var'] = 'original' >>> with set_env(my_var=None, other_var='some_value'): ... print("my_var is set:", 'my_var' in os.environ) ... print("other_var =", os.environ['other_var']) ... my_var is set: False other_var = some_value >>> os.environ['my_var'] 'original' >>> 'other_var' in os.environ False """ original = {key: os.environ.pop(key, None) for key in kwargs} os.environ.update({k: v for k, v in kwargs.items() if v is not None}) try: yield finally: _ = [os.environ.pop(key, None) for key in kwargs] os.environ.update({k: v for k, v in original.items() if v is not None}) def fwd_bwd_jaxprs(f, *example_args): fwd_jaxpr, (y_shape, res_shape) = jax.make_jaxpr( lambda *args: jax.vjp(f, *args), return_shape=True)(*example_args) bwd_jaxpr = jax.make_jaxpr(lambda res, outs: res(outs))(res_shape, y_shape) return fwd_jaxpr, bwd_jaxpr def numpy_vecdot(x, y, axis): """Implementation of numpy.vecdot for testing on numpy < 2.0.0""" if numpy_version() >= (2, 0, 0): raise ValueError("should be calling vecdot directly on numpy 2.0.0") x = np.moveaxis(x, axis, -1) y = np.moveaxis(y, axis, -1) x, y = np.broadcast_arrays(x, y) return np.matmul(np.conj(x[..., None, :]), y[..., None])[..., 0, 0] def complex_plane_sample(dtype, size_re=10, size_im=None): """Return a 2-D array of complex numbers that covers the complex plane with a grid of samples. The size of the grid is (3 + 2 * size_im) x (3 + 2 * size_re) that includes infinity points, extreme finite points, and the specified number of points from real and imaginary axis. For example: >>> print(complex_plane_sample(np.complex64, 0, 3)) [[-inf -infj 0. -infj inf -infj] [-inf-3.4028235e+38j 0.-3.4028235e+38j inf-3.4028235e+38j] [-inf-2.0000000e+00j 0.-2.0000000e+00j inf-2.0000000e+00j] [-inf-1.1754944e-38j 0.-1.1754944e-38j inf-1.1754944e-38j] [-inf+0.0000000e+00j 0.+0.0000000e+00j inf+0.0000000e+00j] [-inf+1.1754944e-38j 0.+1.1754944e-38j inf+1.1754944e-38j] [-inf+2.0000000e+00j 0.+2.0000000e+00j inf+2.0000000e+00j] [-inf+3.4028235e+38j 0.+3.4028235e+38j inf+3.4028235e+38j] [-inf +infj 0. +infj inf +infj]] """ if size_im is None: size_im = size_re finfo = np.finfo(dtype) machine = platform.machine() is_arm_cpu = machine.startswith('aarch') or machine.startswith('arm') smallest = np.nextafter(finfo.tiny, finfo.max) if is_arm_cpu and platform.system() == 'Darwin' else finfo.tiny def make_axis_points(size): prec_dps_ratio = 3.3219280948873626 logmin = logmax = finfo.maxexp / prec_dps_ratio logtiny = finfo.minexp / prec_dps_ratio axis_points = np.zeros(3 + 2 * size, dtype=finfo.dtype) with ignore_warning(category=RuntimeWarning): # Silence RuntimeWarning: overflow encountered in cast half_neg_line = -np.logspace(logmin, logtiny, size, dtype=finfo.dtype) half_line = -half_neg_line[::-1] axis_points[-size - 1:-1] = half_line axis_points[1:size + 1] = half_neg_line if size > 1: axis_points[1] = finfo.min axis_points[-2] = finfo.max if size > 0: axis_points[size] = -smallest axis_points[-size - 1] = smallest axis_points[0] = -np.inf axis_points[-1] = np.inf return axis_points real_axis_points = make_axis_points(size_re) imag_axis_points = make_axis_points(size_im) real_part = real_axis_points.reshape((-1, 3 + 2 * size_re)).repeat(3 + 2 * size_im, 0).astype(dtype) imag_part = imag_axis_points.repeat(2).view(dtype) imag_part.real[:] = 0 imag_part = imag_part.reshape((3 + 2 * size_im, -1)).repeat(3 + 2 * size_re, 1) return real_part + imag_part class vectorize_with_mpmath(np.vectorize): """Same as numpy.vectorize but using mpmath backend for function evaluation. """ map_float_to_complex = dict(float16='complex32', float32='complex64', float64='complex128', float128='complex256', longdouble='clongdouble') map_complex_to_float = {v: k for k, v in map_float_to_complex.items()} float_prec = dict( # float16=11, float32=24, float64=53, # float128=113, # longdouble=113 ) float_minexp = dict( float16=-14, float32=-126, float64=-1022, float128=-16382 ) float_maxexp = dict( float16=16, float32=128, float64=1024, float128=16384, ) def __init__(self, *args, **kwargs): mpmath = kwargs.pop('mpmath', None) if mpmath is None: raise ValueError('vectorize_with_mpmath: no mpmath argument specified') self.extra_prec_multiplier = kwargs.pop('extra_prec_multiplier', 0) self.extra_prec = kwargs.pop('extra_prec', 0) self.mpmath = mpmath self.contexts = dict() self.contexts_inv = dict() for fp_format, prec in self.float_prec.items(): ctx = self.mpmath.mp.clone() ctx.prec = prec self.contexts[fp_format] = ctx self.contexts_inv[ctx] = fp_format super().__init__(*args, **kwargs) def get_context(self, x): if isinstance(x, (np.ndarray, np.floating, np.complexfloating)): fp_format = str(x.dtype) fp_format = self.map_complex_to_float.get(fp_format, fp_format) return self.contexts[fp_format] raise NotImplementedError(f'get mpmath context from {type(x).__name__} instance') def nptomp(self, x): """Convert numpy array/scalar to an array/instance of mpmath number type. """ if isinstance(x, np.ndarray): return np.fromiter(map(self.nptomp, x.flatten()), dtype=object).reshape(x.shape) elif isinstance(x, np.floating): mpmath = self.mpmath ctx = self.get_context(x) prec, rounding = ctx._prec_rounding if np.isposinf(x): return ctx.make_mpf(mpmath.libmp.finf) elif np.isneginf(x): return ctx.make_mpf(mpmath.libmp.fninf) elif np.isnan(x): return ctx.make_mpf(mpmath.libmp.fnan) elif np.isfinite(x): mantissa, exponent = np.frexp(x) man = int(np.ldexp(mantissa, prec)) exp = int(exponent - prec) r = ctx.make_mpf(mpmath.libmp.from_man_exp(man, exp, prec, rounding)) assert ctx.isfinite(r), r._mpf_ return r elif isinstance(x, np.complexfloating): re, im = self.nptomp(x.real), self.nptomp(x.imag) return re.context.make_mpc((re._mpf_, im._mpf_)) raise NotImplementedError(f'convert {type(x).__name__} instance to mpmath number type') def mptonp(self, x): """Convert mpmath instance to numpy array/scalar type. """ if isinstance(x, np.ndarray) and x.dtype.kind == 'O': x_flat = x.flatten() item = x_flat[0] ctx = item.context fp_format = self.contexts_inv[ctx] if isinstance(item, ctx.mpc): dtype = getattr(np, self.map_float_to_complex[fp_format]) elif isinstance(item, ctx.mpf): dtype = getattr(np, fp_format) else: dtype = None if dtype is not None: return np.fromiter(map(self.mptonp, x_flat), dtype=dtype).reshape(x.shape) elif isinstance(x, self.mpmath.ctx_mp.mpnumeric): ctx = x.context if isinstance(x, ctx.mpc): fp_format = self.contexts_inv[ctx] dtype = getattr(np, self.map_float_to_complex[fp_format]) r = dtype().reshape(1).view(getattr(np, fp_format)) r[0] = self.mptonp(x.real) r[1] = self.mptonp(x.imag) return r.view(dtype)[0] elif isinstance(x, ctx.mpf): fp_format = self.contexts_inv[ctx] dtype = getattr(np, fp_format) if ctx.isfinite(x): sign, man, exp, bc = self.mpmath.libmp.normalize(*x._mpf_, *ctx._prec_rounding) assert bc >= 0, (sign, man, exp, bc, x._mpf_) if exp + bc < self.float_minexp[fp_format]: return -ctx.zero if sign else ctx.zero if exp + bc > self.float_maxexp[fp_format]: return ctx.ninf if sign else ctx.inf man = dtype(-man if sign else man) r = np.ldexp(man, exp) assert np.isfinite(r), (x, r, x._mpf_, man) return r elif ctx.isnan(x): return dtype(np.nan) elif ctx.isinf(x): return dtype(-np.inf if x._mpf_[0] else np.inf) raise NotImplementedError(f'convert {type(x)} instance to numpy floating point type') def __call__(self, *args, **kwargs): mp_args = [] context = None for a in args: if isinstance(a, (np.ndarray, np.floating, np.complexfloating)): mp_args.append(self.nptomp(a)) if context is None: context = self.get_context(a) else: assert context is self.get_context(a) else: mp_args.append(a) extra_prec = int(context.prec * self.extra_prec_multiplier) + self.extra_prec with context.extraprec(extra_prec): result = super().__call__(*mp_args, **kwargs) if isinstance(result, tuple): lst = [] for r in result: if ((isinstance(r, np.ndarray) and r.dtype.kind == 'O') or isinstance(r, self.mpmath.ctx_mp.mpnumeric)): r = self.mptonp(r) lst.append(r) return tuple(lst) if ((isinstance(result, np.ndarray) and result.dtype.kind == 'O') or isinstance(result, self.mpmath.ctx_mp.mpnumeric)): return self.mptonp(result) return result class numpy_with_mpmath: """Namespace of universal functions on numpy arrays that use mpmath backend for evaluation and return numpy arrays as outputs. """ _provides = [ 'abs', 'absolute', 'sqrt', 'exp', 'expm1', 'exp2', 'log', 'log1p', 'log10', 'log2', 'sin', 'cos', 'tan', 'arcsin', 'arccos', 'arctan', 'sinh', 'cosh', 'tanh', 'arcsinh', 'arccosh', 'arctanh', 'square', 'positive', 'negative', 'conjugate', 'sign', 'sinc', 'normalize', ] _mp_names = dict( abs='absmin', absolute='absmin', log='ln', arcsin='asin', arccos='acos', arctan='atan', arcsinh='asinh', arccosh='acosh', arctanh='atanh', ) def __init__(self, mpmath, extra_prec_multiplier=0, extra_prec=0): self.mpmath = mpmath for name in self._provides: mp_name = self._mp_names.get(name, name) if hasattr(self, name): op = getattr(self, name) else: def op(x, mp_name=mp_name): return getattr(x.context, mp_name)(x) setattr(self, name, vectorize_with_mpmath(op, mpmath=mpmath, extra_prec_multiplier=extra_prec_multiplier, extra_prec=extra_prec)) # The following function methods operate on mpmath number instances. # The corresponding function names must be listed in # numpy_with_mpmath._provides list. def square(self, x): return x * x def positive(self, x): return x def negative(self, x): return -x def sqrt(self, x): ctx = x.context if isinstance(x, ctx.mpc): # Workaround mpmath 1.3 bug in sqrt(+-inf+-infj) evaluation (see mpmath/mpmath#776). # TODO(pearu): remove this function when mpmath 1.4 or newer # will be the required test dependency. if ctx.isinf(x.imag): return ctx.make_mpc((ctx.inf._mpf_, x.imag._mpf_)) return ctx.sqrt(x) def expm1(self, x): return x.context.expm1(x) def log1p(self, x): ctx = x.context if isinstance(x, ctx.mpc): # Workaround mpmath 1.3 bug in log(+-inf+-infj) evaluation (see mpmath/mpmath#774). # TODO(pearu): remove this function when mpmath 1.4 or newer # will be the required test dependency. if ctx.isinf(x.real) and ctx.isinf(x.imag): pi = ctx.pi if x.real > 0 and x.imag > 0: return ctx.make_mpc((x.real._mpf_, (pi / 4)._mpf_)) if x.real > 0 and x.imag < 0: return ctx.make_mpc((x.real._mpf_, (-pi / 4)._mpf_)) if x.real < 0 and x.imag < 0: return ctx.make_mpc(((-x.real)._mpf_, (-3 * pi / 4)._mpf_)) if x.real < 0 and x.imag > 0: return ctx.make_mpc(((-x.real)._mpf_, (3 * pi / 4)._mpf_)) return ctx.log1p(x) def tan(self, x): ctx = x.context if isinstance(x, ctx.mpc): # Workaround mpmath 1.3 bug in tan(+-inf+-infj) evaluation (see mpmath/mpmath#781). # TODO(pearu): remove this function when mpmath 1.4 or newer # will be the required test dependency. if ctx.isinf(x.imag) and (ctx.isinf(x.real) or ctx.isfinite(x.real)): if x.imag > 0: return ctx.make_mpc((ctx.zero._mpf_, ctx.one._mpf_)) return ctx.make_mpc((ctx.zero._mpf_, (-ctx.one)._mpf_)) if ctx.isinf(x.real) and ctx.isfinite(x.imag): return ctx.make_mpc((ctx.nan._mpf_, ctx.nan._mpf_)) return ctx.tan(x) def tanh(self, x): ctx = x.context if isinstance(x, ctx.mpc): # Workaround mpmath 1.3 bug in tanh(+-inf+-infj) evaluation (see mpmath/mpmath#781). # TODO(pearu): remove this function when mpmath 1.4 or newer # will be the required test dependency. if ctx.isinf(x.imag) and (ctx.isinf(x.real) or ctx.isfinite(x.real)): if x.imag > 0: return ctx.make_mpc((ctx.zero._mpf_, ctx.one._mpf_)) return ctx.make_mpc((ctx.zero._mpf_, (-ctx.one)._mpf_)) if ctx.isinf(x.real) and ctx.isfinite(x.imag): return ctx.make_mpc((ctx.nan._mpf_, ctx.nan._mpf_)) return ctx.tanh(x) def log2(self, x): return x.context.ln(x) / x.context.ln2 def log10(self, x): return x.context.ln(x) / x.context.ln10 def exp2(self, x): return x.context.exp(x * x.context.ln2) def arcsin(self, x): ctx = x.context if isinstance(x, ctx.mpc): # Workaround mpmath 1.3 bug in asin(+-inf+-infj) evaluation (see # mpmath/mpmath#793). # TODO(pearu): remove the if-block below when mpmath 1.4 or # newer will be the required test dependency. pi = ctx.pi inf = ctx.inf zero = ctx.zero if ctx.isinf(x.real): sign_real = -1 if x.real < 0 else 1 real = sign_real * pi / (4 if ctx.isinf(x.imag) else 2) imag = -inf if x.imag < 0 else inf return ctx.make_mpc((real._mpf_, imag._mpf_)) elif ctx.isinf(x.imag): return ctx.make_mpc((zero._mpf_, x.imag._mpf_)) # On branch cut, mpmath.mp.asin returns different value compared # to mpmath.fp.asin and numpy.arcsin (see # mpmath/mpmath#786). The following if-block ensures # compatibility with numpy.arcsin. if x.real > 1 and x.imag == 0: return ctx.asin(x).conjugate() return ctx.asin(x) def arccos(self, x): ctx = x.context if isinstance(x, ctx.mpc): # Workaround mpmath 1.3 bug in acos(+-inf+-infj) evaluation (see # mpmath/mpmath#793). # TODO(pearu): remove the if-block below when mpmath 1.4 or # newer will be the required test dependency. pi = ctx.pi inf = ctx.inf zero = ctx.zero if ctx.isinf(x.imag): if ctx.isinf(x.real): real = pi / 4 if x.real > 0 else 3 * pi / 4 else: real = pi / 2 imag = inf if x.imag < 0 else -inf return ctx.make_mpc((real._mpf_, imag._mpf_)) elif ctx.isinf(x.real): inf = ctx.inf sign_imag = -1 if x.imag < 0 else 1 real = zero if x.real > 0 else pi return ctx.make_mpc((real._mpf_, (-sign_imag * inf)._mpf_)) # On branch cut, mpmath.mp.acos returns different value # compared to mpmath.fp.acos and numpy.arccos. The # following if-block ensures compatibility with # numpy.arccos. if x.imag == 0 and x.real > 1: return -ctx.acos(x) return ctx.acos(x) def arcsinh(self, x): ctx = x.context if isinstance(x, ctx.mpc): # Workaround mpmath 1.3 bug in asinh(+-inf+-infj) evaluation # (see mpmath/mpmath#749). # TODO(pearu): remove the if-block below when mpmath 1.4 or # newer will be the required test dependency. pi = ctx.pi inf = ctx.inf zero = ctx.zero if ctx.isinf(x.imag): sign_imag = -1 if x.imag < 0 else 1 real = -inf if x.real < 0 else inf imag = sign_imag * pi / (4 if ctx.isinf(x.real) else 2) return ctx.make_mpc((real._mpf_, imag._mpf_)) elif ctx.isinf(x.real): return ctx.make_mpc((x.real._mpf_, zero._mpf_)) # On branch cut, mpmath.mp.asinh returns different value # compared to mpmath.fp.asinh and numpy.arcsinh (see # mpmath/mpmath#786). The following if-block ensures # compatibility with numpy.arcsinh. if x.real == 0 and x.imag < -1: return (-ctx.asinh(x)).conjugate() return ctx.asinh(x) def arccosh(self, x): ctx = x.context if isinstance(x, ctx.mpc): # Workaround mpmath 1.3 bug in acosh(+-inf+-infj) evaluation # (see mpmath/mpmath#749). pi = ctx.pi inf = ctx.inf zero = ctx.zero if ctx.isinf(x.real): sign_imag = -1 if x.imag < 0 else 1 imag = ( (3 if x.real < 0 else 1) * sign_imag * pi / 4 if ctx.isinf(x.imag) else (sign_imag * pi if x.real < 0 else zero) ) return ctx.make_mpc((inf._mpf_, imag._mpf_)) elif ctx.isinf(x.imag): sign_imag = -1 if x.imag < 0 else 1 imag = sign_imag * pi / 2 return ctx.make_mpc((inf._mpf_, imag._mpf_)) return ctx.acosh(x) def arctan(self, x): ctx = x.context if isinstance(x, ctx.mpc): # Workaround mpmath 1.3 bug in atan(+-inf+-infj) evaluation # (see mpmath/mpmath#775 with the fix). # TODO(pearu): remove the if-block below when mpmath 1.4 or # newer will be the required test dependency. pi = ctx.pi zero = ctx.zero if ctx.isinf(x.real) or ctx.isinf(x.imag): if x.real < 0: return ctx.make_mpc(((-pi / 2)._mpf_, zero._mpf_)) return ctx.make_mpc(((pi / 2)._mpf_, zero._mpf_)) # On branch cut, mpmath.mp.atan returns different value compared # to mpmath.fp.atan and numpy.arctan (see mpmath/mpmath#865). # The following if-block ensures compatibility with # numpy.arctan. if x.real == 0 and x.imag < -1: return (-ctx.atan(x)).conjugate() return ctx.atan(x) def arctanh(self, x): ctx = x.context if isinstance(x, ctx.mpc): # Workaround mpmath 1.3 bug in atanh(+-inf+-infj) evaluation # (see mpmath/mpmath#775 with the fix). # TODO(pearu): remove the if-block below when mpmath 1.4 or # newer will be the required test dependency. pi = ctx.pi zero = ctx.zero if ctx.isinf(x.real) or ctx.isinf(x.imag): if x.imag < 0: return ctx.make_mpc((zero._mpf_, (-pi / 2)._mpf_)) return ctx.make_mpc((zero._mpf_, (pi / 2)._mpf_)) # On branch cut, mpmath.mp.atanh returns different value # compared to mpmath.fp.atanh and numpy.arctanh. The following # if-block ensures compatibility with numpy.arctanh. if x.imag == 0 and x.real > 1: return ctx.atanh(x).conjugate() return ctx.atanh(x) def normalize(self, exact, reference, value): """Normalize reference and value using precision defined by the difference of exact and reference. """ def worker(ctx, s, e, r, v): ss, sm, se, sbc = s._mpf_ es, em, ee, ebc = e._mpf_ rs, rm, re, rbc = r._mpf_ vs, vm, ve, vbc = v._mpf_ if not (ctx.isfinite(e) and ctx.isfinite(r) and ctx.isfinite(v)): return r, v me = min(se, ee, re, ve) # transform mantissa parts to the same exponent base sm_e = sm << (se - me) em_e = em << (ee - me) rm_e = rm << (re - me) vm_e = vm << (ve - me) # find matching higher and non-matching lower bits of e and r sm_b = bin(sm_e)[2:] if sm_e else '' em_b = bin(em_e)[2:] if em_e else '' rm_b = bin(rm_e)[2:] if rm_e else '' vm_b = bin(vm_e)[2:] if vm_e else '' m = max(len(sm_b), len(em_b), len(rm_b), len(vm_b)) em_b = '0' * (m - len(em_b)) + em_b rm_b = '0' * (m - len(rm_b)) + rm_b c1 = 0 for b0, b1 in zip(em_b, rm_b): if b0 != b1: break c1 += 1 c0 = m - c1 # truncate r and v mantissa rm_m = rm_e >> c0 vm_m = vm_e >> c0 # normalized r and v nr = ctx.make_mpf((rs, rm_m, -c1, len(bin(rm_m)) - 2)) if rm_m else (-ctx.zero if rs else ctx.zero) nv = ctx.make_mpf((vs, vm_m, -c1, len(bin(vm_m)) - 2)) if vm_m else (-ctx.zero if vs else ctx.zero) return nr, nv ctx = exact.context scale = abs(exact) if isinstance(exact, ctx.mpc): rr, rv = worker(ctx, scale, exact.real, reference.real, value.real) ir, iv = worker(ctx, scale, exact.imag, reference.imag, value.imag) return ctx.make_mpc((rr._mpf_, ir._mpf_)), ctx.make_mpc((rv._mpf_, iv._mpf_)) elif isinstance(exact, ctx.mpf): return worker(ctx, scale, exact, reference, value) else: assert 0 # unreachable # Hypothesis testing support def setup_hypothesis(max_examples=30) -> None: """Sets up the hypothesis profiles. Sets up the hypothesis testing profiles, and selects the one specified by the ``JAX_HYPOTHESIS_PROFILE`` environment variable (or the ``--jax_hypothesis_profile`` configuration. Args: max_examples: the maximum number of hypothesis examples to try, when using the default "deterministic" profile. """ try: import hypothesis as hp except (ModuleNotFoundError, ImportError): return # In our tests we often use subclasses with slightly different class variables # to generate whole suites of parameterized tests, but this approach does not # work well with Hypothesis databases, which use some function of the method # identity to generate keys. But, if the method is defined in a superclass, # all subclasses share the same key. This key collision can lead to confusing # false positives in other health checks. # # Still, as far as I understand, for as long as we don't use the example # database, it should be perfectly safe to suppress this health check. This # seems simpler than rewriting our tests that trigger this behavior. See # the end of https://github.com/HypothesisWorks/hypothesis/issues/3446 for # more context. suppressed_checks = [] if hasattr(hp.HealthCheck, "differing_executors"): suppressed_checks.append(hp.HealthCheck.differing_executors) hp.settings.register_profile( "deterministic", database=None, derandomize=True, deadline=None, max_examples=max_examples, print_blob=True, suppress_health_check=suppressed_checks, ) hp.settings.register_profile( "interactive", parent=hp.settings.load_profile("deterministic"), max_examples=1, report_multiple_bugs=False, verbosity=hp.Verbosity.verbose, # Don't try and shrink phases=( hp.Phase.explicit, hp.Phase.reuse, hp.Phase.generate, hp.Phase.target, hp.Phase.explain, ), ) profile = HYPOTHESIS_PROFILE.value logging.info("Using hypothesis profile: %s", profile) hp.settings.load_profile(profile)