# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A mock-up showing a ResNet50 network with training on synthetic data. This file uses the stax neural network definition library and the optimizers optimization library. """ import numpy.random as npr import jax.numpy as jnp from jax import jit, grad, random from jax.example_libraries import optimizers from jax.example_libraries import stax from jax.example_libraries.stax import (AvgPool, BatchNorm, Conv, Dense, FanInSum, FanOut, Flatten, GeneralConv, Identity, MaxPool, Relu, LogSoftmax) # ResNet blocks compose other layers def ConvBlock(kernel_size, filters, strides=(2, 2)): ks = kernel_size filters1, filters2, filters3 = filters Main = stax.serial( Conv(filters1, (1, 1), strides), BatchNorm(), Relu, Conv(filters2, (ks, ks), padding='SAME'), BatchNorm(), Relu, Conv(filters3, (1, 1)), BatchNorm()) Shortcut = stax.serial(Conv(filters3, (1, 1), strides), BatchNorm()) return stax.serial(FanOut(2), stax.parallel(Main, Shortcut), FanInSum, Relu) def IdentityBlock(kernel_size, filters): ks = kernel_size filters1, filters2 = filters def make_main(input_shape): # the number of output channels depends on the number of input channels return stax.serial( Conv(filters1, (1, 1)), BatchNorm(), Relu, Conv(filters2, (ks, ks), padding='SAME'), BatchNorm(), Relu, Conv(input_shape[3], (1, 1)), BatchNorm()) Main = stax.shape_dependent(make_main) return stax.serial(FanOut(2), stax.parallel(Main, Identity), FanInSum, Relu) # ResNet architectures compose layers and ResNet blocks def ResNet50(num_classes): return stax.serial( GeneralConv(('HWCN', 'OIHW', 'NHWC'), 64, (7, 7), (2, 2), 'SAME'), BatchNorm(), Relu, MaxPool((3, 3), strides=(2, 2)), ConvBlock(3, [64, 64, 256], strides=(1, 1)), IdentityBlock(3, [64, 64]), IdentityBlock(3, [64, 64]), ConvBlock(3, [128, 128, 512]), IdentityBlock(3, [128, 128]), IdentityBlock(3, [128, 128]), IdentityBlock(3, [128, 128]), ConvBlock(3, [256, 256, 1024]), IdentityBlock(3, [256, 256]), IdentityBlock(3, [256, 256]), IdentityBlock(3, [256, 256]), IdentityBlock(3, [256, 256]), IdentityBlock(3, [256, 256]), ConvBlock(3, [512, 512, 2048]), IdentityBlock(3, [512, 512]), IdentityBlock(3, [512, 512]), AvgPool((7, 7)), Flatten, Dense(num_classes), LogSoftmax) if __name__ == "__main__": rng_key = random.PRNGKey(0) batch_size = 8 num_classes = 1001 input_shape = (224, 224, 3, batch_size) step_size = 0.1 num_steps = 10 init_fun, predict_fun = ResNet50(num_classes) _, init_params = init_fun(rng_key, input_shape) def loss(params, batch): inputs, targets = batch logits = predict_fun(params, inputs) return -jnp.sum(logits * targets) def accuracy(params, batch): inputs, targets = batch target_class = jnp.argmax(targets, axis=-1) predicted_class = jnp.argmax(predict_fun(params, inputs), axis=-1) return jnp.mean(predicted_class == target_class) def synth_batches(): rng = npr.RandomState(0) while True: images = rng.rand(*input_shape).astype('float32') labels = rng.randint(num_classes, size=(batch_size, 1)) onehot_labels = labels == jnp.arange(num_classes) yield images, onehot_labels opt_init, opt_update, get_params = optimizers.momentum(step_size, mass=0.9) batches = synth_batches() @jit def update(i, opt_state, batch): params = get_params(opt_state) return opt_update(i, grad(loss)(params, batch), opt_state) opt_state = opt_init(init_params) for i in range(num_steps): opt_state = update(i, opt_state, next(batches)) trained_params = get_params(opt_state)