# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A basic MNIST example using JAX together with the mini-libraries stax, for neural network building, and optimizers, for first-order stochastic optimization. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import time import itertools import numpy.random as npr import jax.numpy as np from jax.config import config from jax import jit, grad, random from jax.experimental import optimizers from jax.experimental import stax from jax.experimental.stax import Dense, Relu, LogSoftmax from examples import datasets def loss(params, batch): inputs, targets = batch preds = predict(params, inputs) return -np.mean(preds * targets) def accuracy(params, batch): inputs, targets = batch target_class = np.argmax(targets, axis=1) predicted_class = np.argmax(predict(params, inputs), axis=1) return np.mean(predicted_class == target_class) init_random_params, predict = stax.serial( Dense(1024), Relu, Dense(1024), Relu, Dense(10), LogSoftmax) if __name__ == "__main__": rng = random.PRNGKey(0) step_size = 0.001 num_epochs = 10 batch_size = 128 momentum_mass = 0.9 train_images, train_labels, test_images, test_labels = datasets.mnist() num_train = train_images.shape[0] num_complete_batches, leftover = divmod(num_train, batch_size) num_batches = num_complete_batches + bool(leftover) def data_stream(): rng = npr.RandomState(0) while True: perm = rng.permutation(num_train) for i in range(num_batches): batch_idx = perm[i * batch_size:(i + 1) * batch_size] yield train_images[batch_idx], train_labels[batch_idx] batches = data_stream() opt_init, opt_update, get_params = optimizers.momentum(step_size, mass=momentum_mass) @jit def update(i, opt_state, batch): params = get_params(opt_state) return opt_update(i, grad(loss)(params, batch), opt_state) _, init_params = init_random_params(rng, (-1, 28 * 28)) opt_state = opt_init(init_params) itercount = itertools.count() print("\nStarting training...") for epoch in range(num_epochs): start_time = time.time() for _ in range(num_batches): opt_state = update(next(itercount), opt_state, next(batches)) epoch_time = time.time() - start_time params = get_params(opt_state) train_acc = accuracy(params, (train_images, train_labels)) test_acc = accuracy(params, (test_images, test_labels)) print("Epoch {} in {:0.2f} sec".format(epoch, epoch_time)) print("Training set accuracy {}".format(train_acc)) print("Test set accuracy {}".format(test_acc))