# Copyright 2019 The JAX Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from functools import partial import numpy as np from absl.testing import absltest import scipy.ndimage as osp_ndimage from jax import grad from jax._src import test_util as jtu from jax import dtypes from jax.scipy import ndimage as lsp_ndimage from jax._src.util import prod from jax.config import config config.parse_flags_with_absl() float_dtypes = jtu.dtypes.floating int_dtypes = jtu.dtypes.integer def _fixed_ref_map_coordinates(input, coordinates, order, mode, cval=0.0): # SciPy's implementation of map_coordinates handles boundaries incorrectly, # unless mode='reflect'. For order=1, this only affects interpolation outside # the bounds of the original array. # https://github.com/scipy/scipy/issues/2640 assert order <= 1 padding = [(max(-np.floor(c.min()).astype(int) + 1, 0), max(np.ceil(c.max()).astype(int) + 1 - size, 0)) for c, size in zip(coordinates, input.shape)] shifted_coords = [c + p[0] for p, c in zip(padding, coordinates)] pad_mode = { 'nearest': 'edge', 'mirror': 'reflect', 'reflect': 'symmetric' }.get(mode, mode) if mode == 'constant': padded = np.pad(input, padding, mode=pad_mode, constant_values=cval) else: padded = np.pad(input, padding, mode=pad_mode) result = osp_ndimage.map_coordinates( padded, shifted_coords, order=order, mode=mode, cval=cval) return result class NdimageTest(jtu.JaxTestCase): @jtu.sample_product( [dict(mode=mode, cval=cval) for mode in ['wrap', 'constant', 'nearest', 'mirror', 'reflect'] for cval in ([0, -1] if mode == 'constant' else [0]) ], [dict(impl=impl, rng_factory=rng_factory) for impl, rng_factory in [ ("original", partial(jtu.rand_uniform, low=0, high=1)), ("fixed", partial(jtu.rand_uniform, low=-0.75, high=1.75)), ] ], shape=[(5,), (3, 4), (3, 4, 5)], coords_shape=[(7,), (2, 3, 4)], dtype=float_dtypes + int_dtypes, coords_dtype=float_dtypes, order=[0, 1], round_=[True, False], ) def testMapCoordinates(self, shape, dtype, coords_shape, coords_dtype, order, mode, cval, impl, round_, rng_factory): def args_maker(): x = np.arange(prod(shape), dtype=dtype).reshape(shape) coords = [(size - 1) * rng(coords_shape, coords_dtype) for size in shape] if round_: coords = [c.round().astype(int) for c in coords] return x, coords rng = rng_factory(self.rng()) lsp_op = lambda x, c: lsp_ndimage.map_coordinates( x, c, order=order, mode=mode, cval=cval) impl_fun = (osp_ndimage.map_coordinates if impl == "original" else _fixed_ref_map_coordinates) osp_op = lambda x, c: impl_fun(x, c, order=order, mode=mode, cval=cval) with jtu.strict_promotion_if_dtypes_match([dtype, int if round else coords_dtype]): if dtype in float_dtypes: epsilon = max(dtypes.finfo(dtypes.canonicalize_dtype(d)).eps for d in [dtype, coords_dtype]) self._CheckAgainstNumpy(osp_op, lsp_op, args_maker, tol=100*epsilon) else: self._CheckAgainstNumpy(osp_op, lsp_op, args_maker, tol=0) def testMapCoordinatesErrors(self): x = np.arange(5.0) c = [np.linspace(0, 5, num=3)] with self.assertRaisesRegex(NotImplementedError, 'requires order<=1'): lsp_ndimage.map_coordinates(x, c, order=2) with self.assertRaisesRegex( NotImplementedError, 'does not yet support mode'): lsp_ndimage.map_coordinates(x, c, order=1, mode='grid-wrap') with self.assertRaisesRegex(ValueError, 'sequence of length'): lsp_ndimage.map_coordinates(x, [c, c], order=1) def testMapCoordinateDocstring(self): self.assertIn("Only nearest neighbor", lsp_ndimage.map_coordinates.__doc__) @jtu.sample_product( dtype=float_dtypes + int_dtypes, order=[0, 1], ) def testMapCoordinatesRoundHalf(self, dtype, order): x = np.arange(-3, 3, dtype=dtype) c = np.array([[.5, 1.5, 2.5, 3.5]]) def args_maker(): return x, c lsp_op = lambda x, c: lsp_ndimage.map_coordinates(x, c, order=order) osp_op = lambda x, c: osp_ndimage.map_coordinates(x, c, order=order) with jtu.strict_promotion_if_dtypes_match([dtype, c.dtype]): self._CheckAgainstNumpy(osp_op, lsp_op, args_maker) def testContinuousGradients(self): # regression test for https://github.com/google/jax/issues/3024 def loss(delta): x = np.arange(100.0) border = 10 indices = np.arange(x.size, dtype=x.dtype) + delta # linear interpolation of the linear function y=x should be exact shifted = lsp_ndimage.map_coordinates(x, [indices], order=1) return ((x - shifted) ** 2)[border:-border].mean() # analytical gradient of (x - (x - delta)) ** 2 is 2 * delta self.assertAllClose(grad(loss)(0.5), 1.0, check_dtypes=False) self.assertAllClose(grad(loss)(1.0), 2.0, check_dtypes=False) if __name__ == "__main__": absltest.main(testLoader=jtu.JaxTestLoader())