# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import operator from operator import attrgetter from contextlib import contextmanager from collections import namedtuple from functools import total_ordering, reduce import itertools as it from weakref import ref import threading from typing import Dict, Generator, Iterator, Sequence, Type import types from typing import Any, Callable, ClassVar, Dict, List, Optional, Set import numpy as onp from . import dtypes from .config import FLAGS from . import linear_util as lu from .util import safe_zip, safe_map, partial, curry, prod, partialmethod from .pprint_util import pp, vcat, hcat, pp_kv_pairs, PrettyPrint # TODO(dougalm): the trace cache breaks the leak detector. Consisder solving. check_leaks = False """Disables internal invariant checks.""" skip_checks = not FLAGS.jax_enable_checks # not __debug__ # google doesn't use -O @contextmanager def skipping_checks(): """Context manager for temporarily disabling checks.""" global skip_checks old_value, skip_checks = skip_checks, True try: yield finally: skip_checks = old_value zip = safe_zip map = safe_map # -------------------- jaxprs -------------------- class Jaxpr(object): def __init__(self, constvars, invars, outvars, eqns): """ Params: constvars: list of variables introduced for constants (either literals in the Python program, or the result of constant folding during the generation of the Jaxpr). Array constants are replaced with such variables while scalar constants are kept inline. invars: list of input variables. Together, `constvars` and `invars` are the inputs to the Jaxpr. outvars: list of output variables. eqns: list of equations.""" self.constvars = list(constvars) self.invars = list(invars) self.outvars = list(outvars) self.eqns = list(eqns) def __str__(self): return str(pp_jaxpr(self)) __repr__ = __str__ def subjaxprs(jaxpr: Jaxpr) -> Iterator[Jaxpr]: """Generator for all subjaxprs found in the params of jaxpr.eqns. Does not descend recursively into the found subjaxprs. """ for eqn in jaxpr.eqns: for param in eqn.params.values(): if type(param) is Jaxpr: yield param elif type(param) is TypedJaxpr: yield param.jaxpr class TypedJaxpr(object): def __init__(self, jaxpr: Jaxpr, literals: Sequence, in_avals: Sequence['AbstractValue'], out_avals: Sequence['AbstractValue']): assert len(literals) == len(jaxpr.constvars) assert len(in_avals) == len(jaxpr.invars) if not skip_checks: in_avals_raised = [raise_to_shaped(v) for v in in_avals] out_avals_raised = [raise_to_shaped(v) for v in out_avals] exp_in_avals = [v.aval for v in jaxpr.invars] exp_out_avals = [v.aval for v in jaxpr.outvars] assert in_avals_raised == exp_in_avals, "expected: {}, got: {}".format(exp_in_avals, in_avals_raised) assert out_avals_raised == exp_out_avals, "expected: {}, got: {}".format(exp_out_avals, out_avals_raised) self.jaxpr = jaxpr self.literals = list(literals) self.in_avals = list(in_avals) self.out_avals = list(out_avals) def __iter__(self): return iter((self.jaxpr, self.literals, self.in_avals, self.out_avals)) def __str__(self): # TODO(mattjj): improve this with type annotations? return str(pp_jaxpr(self.jaxpr)) __repr__ = __str__ @curry def jaxpr_as_fun(typed_jaxpr: TypedJaxpr, *args): return eval_jaxpr(typed_jaxpr.jaxpr, typed_jaxpr.literals, *args) class JaxprEqn(namedtuple('JaxprEqn', ['invars', 'outvars', 'primitive', 'params'])): def __repr__(self): return str(pp_eqn(self)).rstrip() new_jaxpr_eqn = JaxprEqn @total_ordering class Var(object): # TODO(frostig,mattjj): We don't override __eq__ or __hash__, so comparison is # by object id, but pretty printing might collide. def __init__(self, count, suffix, aval): self.count = count self.suffix = suffix self.aval = raise_to_shaped(aval) def __lt__(self, other): if not isinstance(other, Var): return NotImplemented else: return (self.count, self.suffix) < (other.count, other.suffix) def __repr__(self): rem = self.count s = '' while True: rem, i = rem // 26, rem % 26 s = chr(97 + i % 26) + s if not rem: break return s + self.suffix def gensym(suffix): counter = it.count() return lambda aval: Var(next(counter), suffix, aval) class Literal(object): __slots__ = ["val", "hash"] def __init__(self, val): self.val = val try: self.hash = hash(val) except TypeError: if type(val) in literalable_types: try: self.hash = hash((val.item(), val.dtype)) except (TypeError, AttributeError): self.hash = None @property def aval(self): return raise_to_shaped(get_aval(self.val)) def __hash__(self): assert False def __eq__(self, other): assert False def __repr__(self): if self.hash is None: return 'Literal(val={})'.format(self.val) else: return '{}'.format(self.val) literalable_types: Set[type] = set() class Primitive(object): multiple_results = False # set for multi-output primitives call_primitive = False # set for call primitives processed in final style map_primitive = False # set for map primitives processed in final style def __init__(self, name): self.name = name def __repr__(self): return '{}'.format(self.name) def bind(self, *args, **kwargs): top_trace = find_top_trace(args) if top_trace is None: return self.impl(*args, **kwargs) tracers = map(top_trace.full_raise, args) out_tracer = top_trace.process_primitive(self, tracers, kwargs) if self.multiple_results: return map(full_lower, out_tracer) else: return full_lower(out_tracer) def def_impl(self, impl): self.impl = impl return impl def def_abstract_eval(self, abstract_eval): self.abstract_eval = abstract_eval return abstract_eval def def_custom_bind(self, bind): self.bind = bind return bind def impl(self, *args, **kwargs): raise NotImplementedError("Evaluation rule for '{}' not implemented" .format(self.name)) def abstract_eval(self, *args, **kwargs): raise NotImplementedError("Abstract evaluation for '{}' not implemented" .format(self.name)) # -------------------- lifting -------------------- # TODO(necula): this belongs next to pe.new_eqn_recipe, but is needed in # core.py. Plan to move all these utilities to jaxpr.py. def extract_call_jaxpr(primitive, params): """Extract the call primitive subjaxpr from the params. Returns the subjaxpr and the params without the "call_jaxpr" value. If this is not a call primitive then returns (None, params). """ if not (primitive.call_primitive or primitive.map_primitive): return (None, params) else: assert "call_jaxpr" in params new_params = dict(params) del new_params["call_jaxpr"] return (params["call_jaxpr"], new_params) def eval_jaxpr(jaxpr, consts, *args): def read(v): if type(v) is Literal: return v.val else: return env[v] def write(v, val): env[v] = val env = {} write(unitvar, unit) map(write, jaxpr.constvars, consts) map(write, jaxpr.invars, args) for eqn in jaxpr.eqns: in_vals = map(read, eqn.invars) call_jaxpr, params = extract_call_jaxpr(eqn.primitive, eqn.params) if call_jaxpr: subfuns = [lu.wrap_init(partial(eval_jaxpr, call_jaxpr, ()))] else: subfuns = [] ans = eqn.primitive.bind(*(subfuns + in_vals), **params) if eqn.primitive.multiple_results: map(write, eqn.outvars, ans) else: write(eqn.outvars[0], ans) return map(read, jaxpr.outvars) # -------------------- tracing -------------------- class Trace: master: 'MasterTrace' level: int sublevel: 'Sublevel' def __init__(self, master: 'MasterTrace', sublevel: 'Sublevel') -> None: self.master = master self.level = master.level self.sublevel = sublevel def full_raise(self, val) -> 'Tracer': if not isinstance(val, Tracer): return self.pure(val) level = self.level sublevel = self.sublevel if val._trace.master is self.master: if val._trace.sublevel == sublevel: return val elif val._trace.sublevel < sublevel: return self.sublift(val) else: raise escaped_tracer_error("Can't lift sublevels {} to {}" .format(val._trace.sublevel, sublevel)) elif val._trace.level < level: if val._trace.sublevel > sublevel: raise escaped_tracer_error("Incompatible sublevel: {}, {}" .format(val._trace, (level, sublevel))) return self.lift(val) elif val._trace.level > level: raise escaped_tracer_error("Can't lift level {} to {}" .format(val, self)) else: # val._trace.level == self.level: raise escaped_tracer_error("Different traces at same level: {}, {}" .format(val, self)) def pure(self, val): raise NotImplementedError("must override") def lift(self, tracer): raise NotImplementedError("must override") def sublift(self, tracer): raise NotImplementedError("must override") def process_primitive(self, primitive, tracers, params): raise NotImplementedError("must override") def __repr__(self): return '{}(level={}/{})'.format( self.__class__.__name__, self.level, self.sublevel) def process_call(self, call_primitive, f, tracers, params): raise NotImplementedError("must override to handle call-like primitives") def process_custom_jvp_call(self, primitive, fun, jvp, tracers): # As a default implementation, drop the custom differentiation rule. This # behavior is desirable when staging out of the JAX system, but not when # there are further differentiation transformations to be applied. Override # this method to allow differentiation to be performed downstream. del primitive, jvp # Unused. return fun.call_wrapped(*tracers) def process_custom_vjp_call(self, primitive, fun, fwd, bwd, tracers, out_trees): # See comment in the above process_custom_jvp_call method. del primitive, fwd, bwd, out_trees # Unused. return fun.call_wrapped(*tracers) def escaped_tracer_error(detail): msg = ("Encountered an unexpected tracer. Perhaps this tracer escaped " "through global state from a previously traced function.\n" "The functions being transformed should not save traced values to " "global state.\nDetails: {}.") return UnexpectedTracerError(msg.format(detail)) class UnexpectedTracerError(Exception): pass class Tracer(object): __array_priority__ = 1000 __slots__ = ['_trace', '__weakref__'] def __array__(self, *args, **kw): msg = ("The numpy.ndarray conversion method __array__() was called on " f"the JAX Tracer object {self}.\n\n" "This error can occur when a JAX Tracer object is passed to a raw " "numpy function, or a method on a numpy.ndarray object. You might " "want to check that you are using `jnp` together with " "`import jax.numpy as jnp` rather than using `np` via " "`import numpy as np`. If this error arises on a line that involves " "array indexing, like `x[idx]`, it may be that the array being " "indexed `x` is a raw numpy.ndarray while the indices `idx` are a " "JAX Tracer instance; in that case, you can instead write " "`jax.device_put(x)[idx]`.") raise Exception(msg) def __init__(self, trace): self._trace = trace def __iter__(self): return iter(self.aval._iter(self)) def __len__(self): return self.aval._len(self) @property def aval(self): raise NotImplementedError("must override") def __neg__(self): return self.aval._neg(self) def __pos__(self): return self.aval._pos(self) def __eq__(self, other): return self.aval._eq(self, other) def __ne__(self, other): return self.aval._ne(self, other) def __lt__(self, other): return self.aval._lt(self, other) def __le__(self, other): return self.aval._le(self, other) def __gt__(self, other): return self.aval._gt(self, other) def __ge__(self, other): return self.aval._ge(self, other) def __abs__(self): return self.aval._abs(self) def __add__(self, other): return self.aval._add(self, other) def __radd__(self, other): return self.aval._radd(self, other) def __sub__(self, other): return self.aval._sub(self, other) def __rsub__(self, other): return self.aval._rsub(self, other) def __mul__(self, other): return self.aval._mul(self, other) def __rmul__(self, other): return self.aval._rmul(self, other) def __div__(self, other): return self.aval._div(self, other) def __rdiv__(self, other): return self.aval._rdiv(self, other) def __truediv__(self, other): return self.aval._truediv(self, other) def __rtruediv__(self, other): return self.aval._rtruediv(self, other) def __floordiv__(self, other): return self.aval._floordiv(self, other) def __rfloordiv__(self, other): return self.aval._rfloordiv(self, other) def __divmod__(self, other): return self.aval._divmod(self, other) def __rdivmod__(self, other): return self.aval._rdivmod(self, other) def __mod__(self, other): return self.aval._mod(self, other) def __rmod__(self, other): return self.aval._rmod(self, other) def __pow__(self, other): return self.aval._pow(self, other) def __rpow__(self, other): return self.aval._rpow(self, other) def __matmul__(self, other): return self.aval._matmul(self, other) def __rmatmul__(self, other): return self.aval._rmatmul(self, other) def __and__(self, other): return self.aval._and(self, other) def __rand__(self, other): return self.aval._rand(self, other) def __or__(self, other): return self.aval._or(self, other) def __ror__(self, other): return self.aval._ror(self, other) def __xor__(self, other): return self.aval._xor(self, other) def __rxor__(self, other): return self.aval._rxor(self, other) def __invert__(self): return self.aval._invert(self) def __lshift__(self, other): return self.aval._lshift(self, other) def __rshift__(self, other): return self.aval._rshift(self, other) def __getitem__(self, idx): return self.aval._getitem(self, idx) def __nonzero__(self): return self.aval._nonzero(self) def __bool__(self): return self.aval._bool(self) def __int__(self): return self.aval._int(self) def __long__(self): return self.aval._long(self) def __hex__(self): return self.aval._hex(self) def __oct__(self): return self.aval._oct(self) def __float__(self): raise TypeError("JAX Tracer object cannot be interpreted as a float. " "Try using `x.astype(float)` instead.") def __complex__(self): raise TypeError("JAX Tracer object cannot be interpreted as a complex. " "Try using `x.astype(complex)` instead.") def __setitem__(self, idx, val): raise TypeError("JAX 'Tracer' objects do not support item assignment") def __getattr__(self, name): # if the aval property raises an AttributeError, gets caught here assert skip_checks or name != "aval" try: attr = getattr(self.aval, name) except KeyError as err: raise AttributeError( "{} has no attribute {}".format(self.__class__.__name__, name) ) from err else: t = type(attr) if t is aval_property: return attr.fget(self) elif t is aval_method: return types.MethodType(attr.fun, self) else: return attr def __repr__(self): base = pp('Traced<{}>with<{}>'.format(self.aval, self._trace)) contents = self._contents() if contents: base += pp(' with ') >> vcat(pp('{} = '.format(name)) >> pp_payload for name, pp_payload in contents) return str(base) def _contents(self): try: return [(name, pp(repr(getattr(self, name)))) for name in self.__slots__] except AttributeError: return () def __copy__(self): return self def __deepcopy__(self, unused_memo): return self # these can be used to set up forwarding of properties and instance methods from # Tracer instances to the underlying avals aval_property = namedtuple("aval_property", ["fget"]) aval_method = namedtuple("aval_method", ["fun"]) class MasterTrace: level: int trace_type: Type[Trace] def __init__(self, level, trace_type) -> None: self.level = level self.trace_type = trace_type def __repr__(self) -> str: return "MasterTrace({},{})".format(self.level, self.trace_type.__name__) def __hash__(self) -> int: return hash((self.level, self.trace_type)) def __eq__(self, other: object) -> bool: return (isinstance(other, MasterTrace) and self.level == other.level and self.trace_type == other.trace_type) class TraceStack: upward: List[MasterTrace] downward: List[MasterTrace] def __init__(self): self.upward = [] self.downward = [] def next_level(self, bottom: bool) -> int: if bottom: return - (len(self.downward) + 1) else: return len(self.upward) def push(self, master_trace: MasterTrace, bottom: bool) -> None: if bottom: self.downward.append(master_trace) else: self.upward.append(master_trace) def pop(self, bottom: bool) -> None: if bottom: self.downward.pop() else: self.upward.pop() def __repr__(self) -> str: return 'Trace stack\n{} ---\n{}'.format( map(' {}\n'.format, self.upward[::-1]), map(' {}\n'.format, self.downward)) def copy(self): new = TraceStack() new.upward = self.upward[:] new.downward = self.downward[:] return new class Sublevel(int): pass # The global state of the tracer is accessed by a thread-local object. # This allows concurrent tracing in separate threads; passing traced objects # between threads is forbidden. class TraceState(threading.local): trace_stack: TraceStack substack: List[Sublevel] initial_style: bool def __init__(self) -> None: self.trace_stack = TraceStack() self.substack = [Sublevel(0)] self.initial_style = False def copy(self): new = TraceState() new.trace_stack = self.trace_stack.copy() new.substack = self.substack[:] new.initial_style = self.initial_style return new trace_state = TraceState() def reset_trace_state() -> bool: "Reset the global trace state and return True if it was already clean." if (trace_state.substack != [Sublevel(0)] or trace_state.trace_stack.downward or trace_state.trace_stack.upward): trace_state.__init__() # type: ignore return False else: return True def cur_sublevel() -> Sublevel: return trace_state.substack[-1] @contextmanager def new_master(trace_type: Type[Trace], bottom=False) -> Generator[MasterTrace, None, None]: level = trace_state.trace_stack.next_level(bottom) master = MasterTrace(level, trace_type) trace_state.trace_stack.push(master, bottom) try: yield master finally: trace_state.trace_stack.pop(bottom) if check_leaks: t = ref(master) del master if t() is not None: print(trace_state.trace_stack) raise Exception('Leaked trace {}'.format(t())) @contextmanager def new_sublevel() -> Generator[None, None, None]: sublevel = Sublevel(len(trace_state.substack)) trace_state.substack.append(sublevel) try: yield finally: trace_state.substack.pop() if check_leaks: t = ref(sublevel) del sublevel if t() is not None: raise Exception('Leaked sublevel {}'.format(t())) def full_lower(val): if isinstance(val, Tracer): return val.full_lower() else: return val def find_top_trace(args) -> Optional[Tracer]: """Find the tracer with the highest-level, or None. """ def check_arg(top_so_far: Optional[Tracer], arg) -> Optional[Tracer]: if isinstance(arg, Tracer): return (top_so_far if top_so_far and top_so_far.level >= arg._trace.level else arg._trace) # Raises error here for bind on LAX primitives if not valid_jaxtype(arg): raise TypeError(f"Argument '{arg}' of type {type(arg)} is not a valid JAX type") return top_so_far top_trace = reduce(check_arg, args, None) # type: ignore[wrong-arg-types] if top_trace is not None: return type(top_trace)(top_trace.master, cur_sublevel()) # type: ignore[call-arg] else: return None @contextmanager def initial_style_staging(): prev, trace_state.initial_style = trace_state.initial_style, True try: yield finally: trace_state.initial_style = prev # -------------------- abstract values -------------------- class AbstractValue(object): __slots__: List[str] = [] def at_least_vspace(self): assert False def __repr__(self): try: kv_pairs = ('{}={}'.format(k, v) for k, v in self.__dict__.items()) return '{}({})'.format(self.__class__.__name__, ','.join(kv_pairs)) except AttributeError: return self.__class__.__name__ def strip_weak_type(self): return self class Bot(AbstractValue): pass bot = Bot() class AbstractUnit(AbstractValue): def join(self, other): if not skip_checks: assert other is abstract_unit, other return self def _eq(self, self_traced, other): return get_aval(other) is self abstract_unit = AbstractUnit() def lattice_join(x, y): if x is None: return y elif y is None: return x elif isinstance(x, type(y)): return y.join(x) elif isinstance(y, type(x)): return x.join(y) else: raise TypeError((x, y)) # For use in typing annotations to denote either a Tracer or a `valid_jaxtype`. Value = Any def valid_jaxtype(x): try: concrete_aval(x) except TypeError: return False else: return True def concrete_aval(x): for typ in type(x).mro(): handler = pytype_aval_mappings.get(typ) if handler: return handler(x) raise TypeError(f"{type(x)} is not a valid Jax type") def get_aval(x): if isinstance(x, Tracer): return x.aval else: return concrete_aval(x) pytype_aval_mappings: Dict[type, Callable[[Any], AbstractValue]] = {} class Unit(object): def __repr__(self): return '*' unit = Unit() literalable_types.add(Unit) class UnitVar(Var): count = -1 suffix = None def __init__(self): pass @property def aval(self): return abstract_unit def __repr__(self): return '*' unitvar = UnitVar() pytype_aval_mappings[Unit] = lambda _: abstract_unit identity_p = Primitive('id') identity_p.def_impl(lambda x: x) identity_p.def_custom_bind(lambda x: x) class ConcretizationTypeError(TypeError): pass def raise_concretization_error(val, context=""): msg = (f"Abstract tracer value encountered where concrete value is expected ({context}).\n" "Use transformation parameters such as `static_argnums` for `jit` " "to avoid tracing input values.\n" "See `https://jax.readthedocs.io/en/latest/faq.html#abstract-tracer-value-encountered-where-concrete-value-is-expected-error`.\n" f"Encountered value: {val}") raise ConcretizationTypeError(msg) def concretization_function_error(fun, context=""): fname = getattr(fun, "__name__", fun) fname_context = f"in `{fname}`" if context: fname_context += f" {context}" def error(self, arg): raise_concretization_error(arg, fname_context) return error def concrete_or_error(typ: Type, val: Any, context=""): """Like typ(val), but gives the context in the error message. Use with typ either `int`, or `bool`. """ if isinstance(val, Tracer): if isinstance(val.aval, ConcreteArray): return typ(val.aval.val) else: raise_concretization_error(val, context) else: return typ(val) class UnshapedArray(AbstractValue): __slots__ = ['dtype', 'weak_type'] array_abstraction_level = 2 def __init__(self, dtype, weak_type=False): self.dtype = onp.dtype(dtypes.canonicalize_dtype(dtype)) self.weak_type = weak_type def __eq__(self, other): return (type(self) is type(other) and self.dtype == other.dtype and self.weak_type == other.weak_type) def __ne__(self, other): return not self == other def __hash__(self): # can use hash(self.dtype) and rely on the fact that numpy reuses base dtype # objects, e.g. `onp.zeros(3).dtype is onp.zeros(4).dtype`, or we can use # the unique character code via hash(self.dtype.char) return hash((self.dtype, self.weak_type)) def __repr__(self): return '{}({}{})'.format(self.__class__.__name__, self.str_short(), ", weak_type=True" if self.weak_type else "") _bool = _nonzero = concretization_function_error(bool) _float = concretization_function_error( float, "Try using `x.astype(float)` instead.") _int = concretization_function_error( int, "Try using `x.astype(int)` instead.") _complex = concretization_function_error( complex, "Try using `x.astype(complex)` instead.") _hex = concretization_function_error(hex) _oct = concretization_function_error(oct) def at_least_vspace(self): return self def join(self, other): if self.dtype == other.dtype: if self.weak_type == other.weak_type: return self else: return UnshapedArray(self.dtype, weak_type=False) else: raise TypeError(self, other) def str_short(self): return self.dtype.name def strip_weak_type(self): """Returns a copy of the aval with weak_type=False.""" return UnshapedArray(self.dtype) if self.weak_type else self @property def shape(self): msg = ("UnshapedArray has no shape. Please open an issue at " "https://github.com/google/jax/issues because it's unexpected for " "UnshapedArray instances to ever be produced.") raise TypeError(msg) class ShapedArray(UnshapedArray): __slots__ = ['shape'] array_abstraction_level = 1 def __init__(self, shape, dtype, weak_type=False): super(ShapedArray, self).__init__(dtype, weak_type=weak_type) self.shape = canonicalize_shape(shape) ndim = property(lambda self: len(self.shape)) size = property(lambda self: prod(self.shape)) broadcast: ClassVar[Optional[aval_method]] = None transpose: ClassVar[Optional[aval_method]] = None reshape: ClassVar[Optional[aval_method]] = None _iter: ClassVar[Optional[staticmethod]] = None def __eq__(self, other): return (type(self) is type(other) and self.dtype == other.dtype and self.shape == other.shape and self.weak_type == other.weak_type) def __hash__(self): # can use hash(self.dtype) and rely on the fact that numpy reuses base dtype # objects, e.g. `onp.zeros(3).dtype is onp.zeros(4).dtype`, or we can use # the unique character code via hash(self.dtype.char) return hash((self.shape, self.dtype, self.weak_type)) def at_least_vspace(self): return self def join(self, other): if self.shape == other.shape and self.dtype == other.dtype: if self.weak_type == other.weak_type: return self else: return ShapedArray(self.shape, self.dtype, weak_type=False) elif self.dtype == other.dtype: return UnshapedArray(self.dtype) else: raise TypeError(self, other) def str_short(self): shapestr = ','.join(map(str, self.shape)) return '{}[{}]'.format(self.dtype.name, shapestr) def __len__(self): try: return self.shape[0] except IndexError: raise TypeError("len() of unsized object") # same as numpy error def _len(self, ignored_tracer): return len(self) def strip_weak_type(self): return ShapedArray(self.shape, self.dtype) if self.weak_type else self def _forward_to_value(self, fun, ignored_tracer, *args): return fun(self.val, *args) class ConcreteArray(ShapedArray): __slots__ = ['val'] array_abstraction_level = 0 def __init__(self, val, weak_type=False): super(ConcreteArray, self).__init__(onp.shape(val), onp.result_type(val), weak_type=weak_type) # Note: canonicalized self.dtype doesn't necessarily match self.val self.val = val assert self.dtype != onp.dtype('O') def __eq__(self, other): return (type(self) is type(other) and self.dtype == other.dtype and self.shape == other.shape and self.weak_type == other.weak_type and onp.all(self.val == other.val)) def __hash__(self): return id(self.val) def at_least_vspace(self): return ShapedArray(self.shape, self.dtype, weak_type=self.weak_type) def join(self, other): if self == other: return self elif self.shape == other.shape and self.dtype == other.dtype: return ShapedArray(self.shape, self.dtype, weak_type=self.weak_type and other.weak_type) elif self.dtype == other.dtype: return UnshapedArray(self.dtype, weak_type=self.weak_type and other.weak_type) else: raise TypeError(self, other) def str_short(self): return str(self.val) def strip_weak_type(self): return ConcreteArray(self.val) if self.weak_type else self _bool = _nonzero = partialmethod(_forward_to_value, bool) _int = partialmethod(_forward_to_value, int) _hex = partialmethod(_forward_to_value, hex) _oct = partialmethod(_forward_to_value, oct) class AbstractToken(AbstractValue): def join(self, other): if isinstance(other, AbstractToken): return self else: assert False, f"Cannot join {self} with {other}" abstract_token = AbstractToken() def raise_to_shaped(aval, weak_type=False): if isinstance(aval, ShapedArray): return ShapedArray(aval.shape, aval.dtype, weak_type=weak_type) elif aval is abstract_unit: return abstract_unit elif aval is abstract_token: return abstract_token else: raise TypeError(type(aval)) # Registry for valid dimension types. This is used by masking.Poly. _DIMENSION_TYPES: Set[type] = {int} def _canonicalize_dimension(dim): if type(dim) in _DIMENSION_TYPES: return dim else: return operator.index(dim) def canonicalize_shape(shape): """Canonicalizes and checks for errors in a user-provided shape value. Args: shape: a Python value that represents a shape. Returns: A tuple of integers. """ try: return tuple(map(_canonicalize_dimension, shape)) except TypeError: pass msg = ("Shapes must be 1D sequences of concrete values of integer type, " "got {}.") if any(isinstance(x, Tracer) and isinstance(get_aval(x), ShapedArray) and not isinstance(get_aval(x), ConcreteArray) for x in shape): msg += ("\nIf using `jit`, try using `static_argnums` or applying `jit` to " "smaller subfunctions.") raise TypeError(msg.format(shape)) # ------------------- Call and map ------------------- def apply_todos(todos, outs): todos_list = list(todos) while todos_list: outs = map(full_lower, todos_list.pop()(outs)) return outs @lu.transformation_with_aux def process_env_traces(post_processor: str, primitive: Primitive, level: int, params_tuple: tuple, *args): outs = yield args, {} params = dict(params_tuple) todo = [] while True: tracers = [x for x in outs if isinstance(x, Tracer) and x._trace.level > level] if tracers: ans = max(tracers, key=lambda x: x._trace.level) else: break trace = type(ans._trace)(ans._trace.master, cur_sublevel()) outs = map(trace.full_raise, outs) post_process = getattr(trace, post_processor) outs, cur_todo = post_process(primitive, outs, params) todo.append(cur_todo) yield outs, tuple(todo) # Ensure the aux output is immutable def _call_bind(processor: str, post_processor: str, primitive: Primitive, f: lu.WrappedFun, *args, **params): top_trace = find_top_trace(args) level = trace_state.trace_stack.next_level(True) if top_trace is None else top_trace.level params_tuple = tuple(params.items()) f, env_trace_todo = process_env_traces(f, post_processor, primitive, level, params_tuple) if top_trace is None: with new_sublevel(): outs = primitive.impl(f, *args, **params) else: tracers = map(top_trace.full_raise, args) process = getattr(top_trace, processor) outs = map(full_lower, process(primitive, f, tracers, params)) return apply_todos(env_trace_todo(), outs) call_bind = partial(_call_bind, 'process_call', 'post_process_call') map_bind = partial(_call_bind, 'process_map', 'post_process_map') def call_impl(f: lu.WrappedFun, *args, **params): del params # params parameterize the call primitive, not the function return f.call_wrapped(*args) call_p = Primitive('call') call_p.multiple_results = True call_p.call_primitive = True call = partial(call_bind, call_p) call_p.def_custom_bind(call) call_p.def_impl(call_impl) # ------------------- Jaxpr checking ------------------- def mapped_aval(size, aval): if aval is abstract_unit: return aval elif isinstance(aval, ShapedArray): # might be raising abstraction level from Concrete here assert aval.shape[0] == size return ShapedArray(aval.shape[1:], aval.dtype) else: raise TypeError(f"Mapped operand {aval}") def unmapped_aval(size, aval): if aval is abstract_unit: return aval elif isinstance(aval, ShapedArray): return ShapedArray((size,) + aval.shape, aval.dtype) else: raise TypeError(f"Mapped output {aval}") def typecheck(aval, x): return typecompat(aval, get_aval(x)) def typecompat(aval_ref, aval): """Determine whether `aval` conforms to `aval_ref`""" aval_ref = raise_to_shaped(aval_ref).strip_weak_type() try: return aval_ref == lattice_join(aval_ref, aval).strip_weak_type() except TypeError: return False def typematch(aval1, aval2): return (raise_to_shaped(aval1).strip_weak_type() == raise_to_shaped(aval2).strip_weak_type()) # For use in Jaxpr typechecking (under `check_jaxpr`) class _JaxprTypeEnvironment(object): __slots__ = ["env"] def __init__(self): self.env: Dict[Var, AbstractValue] = {} def read(self, v: Var): env = self.env if type(v) is not Literal: if v not in env: raise TypeError( "Variable '{}' not defined".format(v)) if v.aval != env[v]: raise TypeError( "Variable '{}' inconsistently typed as {}, bound as {}".format( v, v.aval, env[v])) return v def write(self, v: Var): env = self.env if v in env: raise TypeError( "Variable {} already bound".format(v)) env[v] = v.aval return v def check_jaxpr(jaxpr: Jaxpr): """Checks well-formedness of a jaxpr. Specifically, check that: - variables that are read are bound beforehand - variables are typed equally throughout a jaxpr - variable type annotations are compatible with their binding expression Raises `TypeError` if `jaxpr` is determined invalid. Returns `None` otherwise. """ try: _check_jaxpr(jaxpr) except Exception as e: exception_type = type(e) msg_context = f"while checking jaxpr:\n\n{jaxpr}\n" if len(e.args) == 0: exception_args = [msg_context] else: msg = f"{e.args[0]}\n\n" + msg_context exception_args = [msg, *e.args[1:]] raise exception_type(*exception_args) from e def _check_jaxpr(jaxpr: Jaxpr): env = _JaxprTypeEnvironment() env.write(unitvar) map(env.write, jaxpr.constvars) map(env.write, jaxpr.invars) for eqn in jaxpr.eqns: check_jaxpr_eqn(env, eqn) for subjaxpr in subjaxprs(jaxpr): _check_jaxpr(subjaxpr) map(env.read, jaxpr.outvars) def _valid_eqn_assignment(dst_aval, src_aval): # TODO(frostig): we'd rather this check simply be `typecompat` and not allow # assignment to an AbstractUnit, but partial_eval.tracers_to_jaxpr types eqn # outvars as AbstractUnit if the outvars are unused. return dst_aval is abstract_unit or typecompat(dst_aval, src_aval) def check_jaxpr_eqn(env, eqn): invars = map(env.read, eqn.invars) inferred_out_avals = type_transfer(eqn.primitive, invars, eqn.params) outvars = map(env.write, eqn.outvars) for outvar, inferred_out_aval in zip(outvars, inferred_out_avals): if not _valid_eqn_assignment(outvar.aval, inferred_out_aval): raise TypeError( f"Jaxpr equation LHS {outvar} is {outvar.aval}, " f"RHS is inferred as {inferred_out_aval}, in '{eqn}'") def type_transfer(prim, invars, params): in_avals = [v.aval for v in invars] if prim.call_primitive or prim.map_primitive: if "call_jaxpr" not in params: raise TypeError( f"Call primitive {prim} missing 'call_jaxpr' parameter") if prim.map_primitive: if "axis_size" not in params: raise TypeError( f"Map primitive {prim} missing 'axis_size' parameter") if "mapped_invars" not in params: raise TypeError( f"Map primitive {prim} missing 'mapped_invars' parameter") call_jaxpr = params["call_jaxpr"] if len(invars) != len(call_jaxpr.invars): raise TypeError( f"Call primitive {prim} with {len(invars)} operands " f"cannot call jaxpr with {len(call_jaxpr.invars)} invars") binder_avals = [v.aval for v in call_jaxpr.invars] if prim.map_primitive: axis_size = params["axis_size"] mapped_invars = params["mapped_invars"] binder_avals = [unmapped_aval(axis_size, aval) if mapped else aval for aval, mapped in zip(binder_avals, mapped_invars)] for binder_aval, in_aval in zip(binder_avals, in_avals): if not typecompat(binder_aval, in_aval): raise TypeError( f"Call primitive {prim} passes operand {in_aval} " f"to jaxpr expecting {binder_aval}") out_avals = [v.aval for v in call_jaxpr.outvars] if prim.map_primitive: axis_size = params["axis_size"] out_avals = [unmapped_aval(axis_size, aval) for aval in out_avals] else: out_avals = prim.abstract_eval(*in_avals, **params) if not prim.multiple_results: out_avals = [out_avals] return out_avals # ------------------- Jaxpr printed representation ------------------- def pp_vars(vs) -> str: return ' '.join(map(str, vs)) def pp_eqn_compact(primitive_name: str, params: Dict) -> PrettyPrint: filtered_params = {k: v for k, v in params.items() if not isinstance(v, (Jaxpr, TypedJaxpr))} return pp(primitive_name) >> pp_kv_pairs(sorted(filtered_params.items())) def pp_eqn(eqn: JaxprEqn) -> PrettyPrint: lhs = pp_vars(eqn.outvars) pp_subexpr = pp('') return (pp('{} = '.format(lhs)) >> pp(eqn.primitive.name) >> pp_kv_pairs(sorted(eqn.params.items())) >> pp(' ') >> pp(pp_vars(eqn.invars))) + pp_subexpr def pp_jaxpr(jaxpr) -> PrettyPrint: pp_outvars = str(tuple(jaxpr.outvars)) return (pp('{{ lambda {} ; {}.'.format(pp_vars(jaxpr.constvars), pp_vars(jaxpr.invars))) + ((pp('let ') >> vcat(map(pp_eqn, jaxpr.eqns))) + pp('in {} }}'.format(pp_outvars))).indent(2))