# Copyright 2023 The JAX Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tools to create numpy-style ufuncs.""" _AT_INPLACE_WARNING = """\ Because JAX arrays are immutable, jnp.ufunc.at() cannot operate inplace like np.ufunc.at(). Instead, you can pass inplace=False and capture the result; e.g. >>> arr = jnp.add.at(arr, ind, val, inplace=False) """ from functools import partial import operator import jax from jax._src.lax import lax as lax_internal from jax._src.numpy.lax_numpy import _eliminate_deprecated_list_indexing, append, take from jax._src.numpy.reductions import _moveaxis from jax._src.numpy.util import _wraps, check_arraylike, _broadcast_to, _where from jax._src.numpy.vectorize import vectorize from jax._src.util import canonicalize_axis import numpy as np class ufunc: """Functions that operate element-by-element on whole arrays. This is a class for LAX-backed implementations of numpy ufuncs. """ def __init__(self, func, /, nin, nout, *, name=None, nargs=None, identity=None): # We want ufunc instances to work properly when marked as static, # and for this reason it's important that their properties not be # mutated. We prevent this by storing them in a dunder attribute, # and accessing them via read-only properties. self.__name__ = name or func.__name__ self.__static_props = { 'func': func, 'call': vectorize(func), 'nin': operator.index(nin), 'nout': operator.index(nout), 'nargs': operator.index(nargs or nin), 'identity': identity } _func = property(lambda self: self.__static_props['func']) _call = property(lambda self: self.__static_props['call']) nin = property(lambda self: self.__static_props['nin']) nout = property(lambda self: self.__static_props['nout']) nargs = property(lambda self: self.__static_props['nargs']) identity = property(lambda self: self.__static_props['identity']) def __hash__(self): # Do not include _call, because it is computed from _func. return hash((self._func, self.__name__, self.identity, self.nin, self.nout, self.nargs)) def __eq__(self, other): # Do not include _call, because it is computed from _func. return isinstance(other, ufunc) and ( (self._func, self.__name__, self.identity, self.nin, self.nout, self.nargs) == (other._func, other.__name__, other.identity, other.nin, other.nout, other.nargs)) def __repr__(self): return f"" def __call__(self, *args, out=None, where=None, **kwargs): if out is not None: raise NotImplementedError(f"out argument of {self}") if where is not None: raise NotImplementedError(f"where argument of {self}") return self._call(*args, **kwargs) @_wraps(np.ufunc.reduce, module="numpy.ufunc") @partial(jax.jit, static_argnames=['self', 'axis', 'dtype', 'out', 'keepdims']) def reduce(self, a, axis=0, dtype=None, out=None, keepdims=False, initial=None, where=None): if self.nin != 2: raise ValueError("reduce only supported for binary ufuncs") if self.nout != 1: raise ValueError("reduce only supported for functions returning a single value") if out is not None: raise NotImplementedError(f"out argument of {self.__name__}.reduce()") # TODO(jakevdp): implement where. if where is not None: raise NotImplementedError(f"where argument of {self.__name__}.reduce()") return self._reduce_via_scan(a, axis=axis, dtype=dtype, keepdims=keepdims, initial=initial) def _reduce_via_scan(self, arr, axis=0, dtype=None, keepdims=False, initial=None): assert self.nin == 2 and self.nout == 1 check_arraylike(f"{self.__name__}.reduce", arr) arr = lax_internal.asarray(arr) if initial is None: initial = self.identity if dtype is None: dtype = jax.eval_shape(self, lax_internal._one(arr), lax_internal._one(arr)).dtype if isinstance(axis, tuple): axis = tuple(canonicalize_axis(a, arr.ndim) for a in axis) raise NotImplementedError("tuple of axes") elif axis is None: if keepdims: final_shape = (1,) * arr.ndim else: final_shape = () arr = arr.ravel() axis = 0 else: axis = canonicalize_axis(axis, arr.ndim) if keepdims: final_shape = (*arr.shape[:axis], 1, *arr.shape[axis + 1:]) else: final_shape = (*arr.shape[:axis], *arr.shape[axis + 1:]) # TODO: handle without transpose? if axis != 0: arr = _moveaxis(arr, axis, 0) if initial is None and arr.shape[0] == 0: raise ValueError("zero-size array to reduction operation {self.__name__} which has no ideneity") def body_fun(i, val): return self._call(val, arr[i].astype(dtype)) if initial is None: start = 1 initial = arr[0] else: check_arraylike(f"{self.__name__}.reduce", arr) start = 0 initial = _broadcast_to(lax_internal.asarray(initial).astype(dtype), arr.shape[1:]) result = jax.lax.fori_loop(start, arr.shape[0], body_fun, initial) if keepdims: result = result.reshape(final_shape) return result @_wraps(np.ufunc.accumulate, module="numpy.ufunc") @partial(jax.jit, static_argnames=['self', 'axis', 'dtype']) def accumulate(self, a, axis=0, dtype=None, out=None): if self.nin != 2: raise ValueError("accumulate only supported for binary ufuncs") if self.nout != 1: raise ValueError("accumulate only supported for functions returning a single value") if out is not None: raise NotImplementedError(f"out argument of {self.__name__}.accumulate()") return self._accumulate_via_scan(a, axis=axis, dtype=dtype) def _accumulate_via_scan(self, arr, axis=0, dtype=None): assert self.nin == 2 and self.nout == 1 check_arraylike(f"{self.__name__}.accumulate", arr) arr = lax_internal.asarray(arr) if dtype is None: dtype = jax.eval_shape(self, lax_internal._one(arr), lax_internal._one(arr)).dtype if axis is None or isinstance(axis, tuple): raise ValueError("accumulate does not allow multiple axes") axis = canonicalize_axis(axis, np.ndim(arr)) arr = _moveaxis(arr, axis, 0) def scan_fun(carry, _): i, x = carry y = _where(i == 0, arr[0].astype(dtype), self._call(x.astype(dtype), arr[i].astype(dtype))) return (i + 1, y), y _, result = jax.lax.scan(scan_fun, (0, arr[0].astype(dtype)), None, length=arr.shape[0]) return _moveaxis(result, 0, axis) @_wraps(np.ufunc.accumulate, module="numpy.ufunc") @partial(jax.jit, static_argnums=[0], static_argnames=['inplace']) def at(self, a, indices, b=None, /, *, inplace=True): if inplace: raise NotImplementedError(_AT_INPLACE_WARNING) if b is None: return self._at_via_scan(a, indices) else: return self._at_via_scan(a, indices, b) def _at_via_scan(self, a, indices, *args): check_arraylike(f"{self.__name__}.at", a, *args) dtype = jax.eval_shape(self, lax_internal._one(a), *(lax_internal._one(arg) for arg in args)).dtype a = lax_internal.asarray(a).astype(dtype) args = tuple(lax_internal.asarray(arg).astype(dtype) for arg in args) indices = _eliminate_deprecated_list_indexing(indices) if not indices: return a shapes = [np.shape(i) for i in indices if not isinstance(i, slice)] shape = shapes and jax.lax.broadcast_shapes(*shapes) if not shape: return a.at[indices].set(self._call(a.at[indices].get(), *args)) args = tuple(_broadcast_to(arg, shape).ravel() for arg in args) indices = [idx if isinstance(idx, slice) else _broadcast_to(idx, shape).ravel() for idx in indices] def scan_fun(carry, x): i, a = carry idx = tuple(ind if isinstance(ind, slice) else ind[i] for ind in indices) a = a.at[idx].set(self._call(a.at[idx].get(), *(arg[i] for arg in args))) return (i + 1, a), x carry, _ = jax.lax.scan(scan_fun, (0, a), None, len(indices[0])) return carry[1] @_wraps(np.ufunc.reduceat, module="numpy.ufunc") @partial(jax.jit, static_argnames=['self', 'axis', 'dtype']) def reduceat(self, a, indices, axis=0, dtype=None, out=None): if self.nin != 2: raise ValueError("reduceat only supported for binary ufuncs") if self.nout != 1: raise ValueError("reduceat only supported for functions returning a single value") if out is not None: raise NotImplementedError(f"out argument of {self.__name__}.reduceat()") return self._reduceat_via_scan(a, indices, axis=axis, dtype=dtype) def _reduceat_via_scan(self, a, indices, axis=0, dtype=None): check_arraylike(f"{self.__name__}.reduceat", a, indices) a = lax_internal.asarray(a) idx_tuple = _eliminate_deprecated_list_indexing(indices) assert len(idx_tuple) == 1 indices = idx_tuple[0] if a.ndim == 0: raise ValueError(f"reduceat: a must have 1 or more dimension, got {a.shape=}") if indices.ndim != 1: raise ValueError(f"reduceat: indices must be one-dimensional, got {indices.shape=}") if dtype is None: dtype = a.dtype if axis is None or isinstance(axis, (tuple, list)): raise ValueError("reduceat requires a single integer axis.") axis = canonicalize_axis(axis, a.ndim) out = take(a, indices, axis=axis) ind = jax.lax.expand_dims(append(indices, a.shape[axis]), np.delete(np.arange(out.ndim), axis)) ind_start = jax.lax.slice_in_dim(ind, 0, ind.shape[axis] - 1, axis=axis) ind_end = jax.lax.slice_in_dim(ind, 1, ind.shape[axis], axis=axis) def loop_body(i, out): return _where((i > ind_start) & (i < ind_end), self._call(out, take(a, i.reshape(1), axis=axis)), out) return jax.lax.fori_loop(0, a.shape[axis], loop_body, out) @_wraps(np.ufunc.outer, module="numpy.ufunc") @partial(jax.jit, static_argnums=[0]) def outer(self, A, B, /, **kwargs): if self.nin != 2: raise ValueError("outer only supported for binary ufuncs") if self.nout != 1: raise ValueError("outer only supported for functions returning a single value") check_arraylike(f"{self.__name__}.outer", A, B) _ravel = lambda A: jax.lax.reshape(A, (np.size(A),)) result = jax.vmap(jax.vmap(partial(self._call, **kwargs), (None, 0)), (0, None))(_ravel(A), _ravel(B)) return result.reshape(*np.shape(A), *np.shape(B)) def frompyfunc(func, /, nin, nout, *, identity=None): """Create a JAX ufunc from an arbitrary JAX-compatible scalar function. Args: func : a callable that takes `nin` scalar arguments and return `nout` outputs. nin: integer specifying the number of scalar inputs nout: integer specifying the number of scalar outputs identity: (optional) a scalar specifying the identity of the operation, if any. Returns: wrapped : jax.numpy.ufunc wrapper of func. """ # TODO(jakevdp): use functools.wraps or similar to wrap the docstring? return ufunc(func, nin, nout, identity=identity)