# Copyright 2018 The JAX Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A basic MNIST example using JAX with the mini-libraries stax and optimizers. The mini-library jax.example_libraries.stax is for neural network building, and the mini-library jax.example_libraries.optimizers is for first-order stochastic optimization. """ import time import itertools import numpy.random as npr import jax.numpy as jnp from jax import jit, grad, random from jax.example_libraries import optimizers from jax.example_libraries import stax from jax.example_libraries.stax import Dense, Relu, LogSoftmax from examples import datasets def loss(params, batch): inputs, targets = batch preds = predict(params, inputs) return -jnp.mean(jnp.sum(preds * targets, axis=1)) def accuracy(params, batch): inputs, targets = batch target_class = jnp.argmax(targets, axis=1) predicted_class = jnp.argmax(predict(params, inputs), axis=1) return jnp.mean(predicted_class == target_class) init_random_params, predict = stax.serial( Dense(1024), Relu, Dense(1024), Relu, Dense(10), LogSoftmax) if __name__ == "__main__": rng = random.PRNGKey(0) step_size = 0.001 num_epochs = 10 batch_size = 128 momentum_mass = 0.9 train_images, train_labels, test_images, test_labels = datasets.mnist() num_train = train_images.shape[0] num_complete_batches, leftover = divmod(num_train, batch_size) num_batches = num_complete_batches + bool(leftover) def data_stream(): rng = npr.RandomState(0) while True: perm = rng.permutation(num_train) for i in range(num_batches): batch_idx = perm[i * batch_size:(i + 1) * batch_size] yield train_images[batch_idx], train_labels[batch_idx] batches = data_stream() opt_init, opt_update, get_params = optimizers.momentum(step_size, mass=momentum_mass) @jit def update(i, opt_state, batch): params = get_params(opt_state) return opt_update(i, grad(loss)(params, batch), opt_state) _, init_params = init_random_params(rng, (-1, 28 * 28)) opt_state = opt_init(init_params) itercount = itertools.count() print("\nStarting training...") for epoch in range(num_epochs): start_time = time.time() for _ in range(num_batches): opt_state = update(next(itercount), opt_state, next(batches)) epoch_time = time.time() - start_time params = get_params(opt_state) train_acc = accuracy(params, (train_images, train_labels)) test_acc = accuracy(params, (test_images, test_labels)) print(f"Epoch {epoch} in {epoch_time:0.2f} sec") print(f"Training set accuracy {train_acc}") print(f"Test set accuracy {test_acc}")