# Copyright 2018 The JAX Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # On-device arrays. from functools import partial, partialmethod import operator from typing import (Any, List, Optional, Union) import weakref import warnings import numpy as np import jax from jax import core from jax._src.config import config from jax._src import abstract_arrays from jax._src import dtypes from jax._src import profiler from jax._src.lib import xla_client as xc import jax._src.util as util ### device-persistent data xe = xc._xla Device = xc.Device Buffer = xe.Buffer def _forward_method(attrname, self, fun, *args): return fun(getattr(self, attrname), *args) _forward_to_value = partial(_forward_method, "_value") # The following is used for the type xc.Buffer or _DeviceArray. DeviceArrayProtocol = Any DeviceArray = xc.DeviceArrayBase def make_device_array( aval: core.ShapedArray, device: Optional[Device], device_buffer: Buffer, ) -> Union[Buffer, "_DeviceArray"]: """Returns a DeviceArray implementation based on arguments. This is to be used only within JAX. It will return either a PythonDeviceArray or a C++ equivalent implementation. """ if isinstance(device_buffer, xc.Buffer): if device_buffer.aval == aval and device_buffer._device == device: return device_buffer device_buffer = device_buffer.clone() device_buffer._device = device device_buffer.aval = aval device_buffer.weak_type = aval.weak_type return device_buffer return _DeviceArray(aval, device, device_buffer) def type_is_device_array(x): """Returns `True` if `x` is a non-sharded DeviceArray. Use this function instead of `type(x) is Devicearray`. """ type_x = type(x) return type_x is _DeviceArray or type_x is xc.Buffer def device_array_supports_weakrefs(): try: weakref.ref(DeviceArray()) return True except TypeError: return False class _DeviceArray(DeviceArray): # type: ignore """A DeviceArray is an ndarray backed by a single device memory buffer.""" # We don't subclass ndarray because that would open up a host of issues, # but lax_numpy.py overrides isinstance behavior and attaches ndarray methods. __slots__ = [ "aval", "device_buffer", "_npy_value", "_device", "__weakref__" ] __array_priority__ = 100 # DeviceArray has methods that are dynamically populated in lax_numpy.py, # and this annotation is needed to make pytype happy. _HAS_DYNAMIC_ATTRIBUTES = True def __init__(self, aval: core.ShapedArray, device: Optional[Device], device_buffer: Buffer): """Initializer. Args: aval: The abstract value associated to this array (shape+dtype+weak_type). device: The optional sticky device. See https://jax.readthedocs.io/en/latest/faq.html#controlling-data-and-computation-placement-on-devices device_buffer: The underlying buffer owning the on-device data. """ DeviceArray.__init__(self) self.aval = aval self.device_buffer = device_buffer self._device = device self._npy_value = None if config.jax_enable_checks: assert type(aval) is core.ShapedArray npy_value = self._value assert npy_value.dtype == aval.dtype and npy_value.shape == aval.shape, ( aval, npy_value.shape, npy_value.dtype) assert (device is None) or device is device_buffer.device() def _check_if_deleted(self): if self.device_buffer is deleted_buffer: raise RuntimeError("DeviceArray has been deleted.") @profiler.annotate_function def block_until_ready(self): """Blocks the caller until the buffer's value has been computed on device. This method is mostly useful for timing microbenchmarks that wish to time how long a computation takes, without transferring the result back to the host. Returns the buffer object (`self`). """ self._check_if_deleted() self.device_buffer.block_until_ready() return self @property def _value(self): self._check_if_deleted() if self._npy_value is None: self._npy_value = np.asarray(self.device_buffer) # pytype: disable=attribute-error # bind-properties self._npy_value.flags.writeable = False return self._npy_value @property def shape(self): return self.aval.shape @property def dtype(self): return self.aval.dtype @property def size(self): return util.prod(self.aval.shape) @property def ndim(self): return len(self.aval.shape) def device(self): self._check_if_deleted() return self.device_buffer.device() # pytype: disable=attribute-error def copy_to_host_async(self): """Requests a copy of the buffer to the host.""" self._check_if_deleted() if self._npy_value is None: self.device_buffer.copy_to_host_async() # pytype: disable=attribute-error def delete(self): """Deletes the device array and any cached copy on the host. It is an error to access the contents of a `DeviceArray` after it has been deleted. Use of this method is optional; device buffers will be reclaimed automatically by Python when a DeviceArray object is garbage collected. However, it is sometimes useful to have more explicit control over the time of deletion. """ self.device_buffer.delete() # pytype: disable=attribute-error self.device_buffer = deleted_buffer self._npy_value = None @property def __cuda_array_interface__(self): return self.device_buffer.__cuda_array_interface__ # pytype: disable=attribute-error # bind-properties # Adding methods dynamically to both _DeviceArray and xc.Buffer # pylint: disable=protected-access for device_array in [DeviceArray]: def __repr__(self): line_width = np.get_printoptions()["linewidth"] prefix = '{}('.format(self.__class__.__name__.lstrip('_')) s = np.array2string(self._value, prefix=prefix, suffix=',', separator=', ', max_line_width=line_width) if self.aval is not None and self.aval.weak_type: dtype_str = f'dtype={self.dtype.name}, weak_type=True)' else: dtype_str = f'dtype={self.dtype.name})' last_line_len = len(s) - s.rfind('\n') + 1 sep = ' ' if last_line_len + len(dtype_str) + 1 > line_width: sep = ' ' * len(prefix) return f"{prefix}{s},{sep}{dtype_str}" setattr(device_array, "__repr__", __repr__) def item(self): if dtypes.issubdtype(self.dtype, np.complexfloating): return complex(self) elif dtypes.issubdtype(self.dtype, np.floating): return float(self) elif dtypes.issubdtype(self.dtype, np.integer): return int(self) elif dtypes.issubdtype(self.dtype, np.bool_): return bool(self) else: raise TypeError(self.dtype) setattr(device_array, "item", item) def __len__(self): try: return self.aval.shape[0] except IndexError as err: raise TypeError("len() of unsized object") from err # same as numpy error setattr(device_array, "__len__", __len__) def __iter__(self): if self.ndim == 0: raise TypeError("iteration over a 0-d array") # same as numpy error else: return (sl for chunk in self._chunk_iter(100) for sl in chunk._unstack()) setattr(device_array, "__iter__", __iter__) def __reversed__(self): return iter(self[::-1]) setattr(device_array, "__reversed__", __reversed__) def __format__(self, format_spec): # Simulates behavior of https://github.com/numpy/numpy/pull/9883 if self.ndim == 0: return format(self._value[()], format_spec) else: return format(self._value, format_spec) setattr(device_array, "__format__", __format__) def __array__(self, dtype=None, context=None): return np.asarray(self._value, dtype=dtype) setattr(device_array, "__array__", __array__) # TODO(phawkins): delete this code path after the deprecation for .to_py() # expires in Nov 2022. def to_py(self): warnings.warn("The .to_py() method on JAX arrays is deprecated. Use " "np.asarray(...) instead.", category=FutureWarning) return np.asarray(self._value) setattr(device_array, "to_py", to_py) def __dlpack__(self): from jax.dlpack import to_dlpack # pylint: disable=g-import-not-at-top return to_dlpack(self) setattr(device_array, "__dlpack__", __dlpack__) def __reduce__(self): fun, args, arr_state = self._value.__reduce__() aval_state = {'weak_type': self.aval.weak_type, 'named_shape': self.aval.named_shape} return (reconstruct_device_array, (fun, args, arr_state, aval_state)) setattr(device_array, "__reduce__", __reduce__) setattr(device_array, "__str__", partialmethod(_forward_to_value, str)) setattr(device_array, "__bool__", partialmethod(_forward_to_value, bool)) setattr(device_array, "__nonzero__", partialmethod(_forward_to_value, bool)) setattr(device_array, "__float__", lambda self: self._value.__float__()) setattr(device_array, "__int__", lambda self: self._value.__int__()) setattr(device_array, "__complex__", lambda self: self._value.__complex__()) setattr(device_array, "__hex__", partialmethod(_forward_to_value, hex)) setattr(device_array, "__oct__", partialmethod(_forward_to_value, oct)) setattr(device_array, "__index__", partialmethod(_forward_to_value, operator.index)) to_bytes = lambda self, order="C": self._value.tobytes(order) setattr(device_array, "tobytes", to_bytes) del to_bytes setattr(device_array, "tolist", lambda self: self._value.tolist()) # explicitly set to be unhashable. setattr(device_array, "__hash__", None) # clobbered when jax.numpy is imported, but useful in tests setattr(device_array, "__eq__", lambda self, other: self._value == other) # The following methods are dynamically overridden in lax_numpy.py. def raise_not_implemented(): raise NotImplementedError setattr(device_array, "__getitem__", lambda self, i: raise_not_implemented()) # pylint: enable=protected-access def reconstruct_device_array(fun, args, arr_state, aval_state): """Method to reconstruct a device array from a serialized state.""" np_value = fun(*args) np_value.__setstate__(arr_state) jnp_value = jax.device_put(np_value) jnp_value.aval = jnp_value.aval.update(**aval_state) return jnp_value class DeletedBuffer(object): pass deleted_buffer = DeletedBuffer() device_array_types: List[type] = [xc.Buffer, _DeviceArray] for _device_array in device_array_types: core.literalable_types.add(_device_array) core.pytype_aval_mappings[_device_array] = abstract_arrays.canonical_concrete_aval