# Copyright 2018 The JAX Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import annotations from collections.abc import Generator, Iterable, Sequence from contextlib import contextmanager, ExitStack import datetime import inspect import io import functools from functools import partial import math import re import os import tempfile import textwrap from typing import Any, Callable import unittest import warnings import zlib from absl.testing import absltest from absl.testing import parameterized import numpy as np import numpy.random as npr import jax from jax import lax from jax.experimental.compilation_cache import compilation_cache from jax._src.interpreters import mlir from jax.tree_util import tree_map, tree_all, tree_flatten, tree_unflatten from jax._src import api from jax._src import pjit as pjit_lib from jax._src import config from jax._src import core from jax._src import dispatch from jax._src import linear_util as lu from jax._src import dtypes as _dtypes from jax._src import monitoring from jax._src import stages from jax._src.lib import xla_client as xc from jax._src.cloud_tpu_init import running_in_cloud_tpu_vm from jax._src.interpreters import pxla from jax._src.numpy.util import promote_dtypes, promote_dtypes_inexact from jax._src.util import unzip2 from jax._src.public_test_util import ( # noqa: F401 _assert_numpy_allclose, _check_dtypes_match, _default_tolerance, _dtype, check_close, check_grads, check_jvp, check_vjp, default_gradient_tolerance, default_tolerance, tolerance) from jax._src import xla_bridge # This submodule includes private test utilities that are not exported to # jax.test_util. Functionality appearing here is for internal use only, and # may be changed or removed at any time and without any deprecation cycle. _TEST_DUT = config.DEFINE_string( 'jax_test_dut', '', help= 'Describes the device under test in case special consideration is required.' ) NUM_GENERATED_CASES = config.DEFINE_integer( 'jax_num_generated_cases', int(os.getenv('JAX_NUM_GENERATED_CASES', '10')), help='Number of generated cases to test') _MAX_CASES_SAMPLING_RETRIES = config.DEFINE_integer( 'max_cases_sampling_retries', int(os.getenv('JAX_MAX_CASES_SAMPLING_RETRIES', '100')), 'Number of times a failed test sample should be retried. ' 'When an unseen case cannot be generated in this many trials, the ' 'sampling process is terminated.' ) _SKIP_SLOW_TESTS = config.DEFINE_bool( 'jax_skip_slow_tests', config.bool_env('JAX_SKIP_SLOW_TESTS', False), help='Skip tests marked as slow (> 5 sec).' ) _TEST_TARGETS = config.DEFINE_string( 'test_targets', os.getenv('JAX_TEST_TARGETS', ''), 'Regular expression specifying which tests to run, called via re.search on ' 'the test name. If empty or unspecified, run all tests.' ) _EXCLUDE_TEST_TARGETS = config.DEFINE_string( 'exclude_test_targets', os.getenv('JAX_EXCLUDE_TEST_TARGETS', ''), 'Regular expression specifying which tests NOT to run, called via re.search ' 'on the test name. If empty or unspecified, run all tests.' ) TEST_WITH_PERSISTENT_COMPILATION_CACHE = config.DEFINE_bool( 'jax_test_with_persistent_compilation_cache', config.bool_env('JAX_TEST_WITH_PERSISTENT_COMPILATION_CACHE', False), help='If enabled, the persistent compilation cache will be enabled for all ' 'test cases. This can be used to increase compilation cache coverage.') # We sanitize test names to ensure they work with "unitttest -k" and # "pytest -k" test filtering. pytest accepts '[' and ']' but unittest -k # does not. We replace sequences of problematic characters with a single '_'. kSanitizeNameRE = re.compile(r"[ \"'\[\](){}<>=,._]+") def sanitize_test_name(s: str) -> str: return kSanitizeNameRE.sub("_", s) def num_float_bits(dtype): return _dtypes.finfo(_dtypes.canonicalize_dtype(dtype)).bits def to_default_dtype(arr): """Convert a value to an array with JAX's default dtype. This is generally used for type conversions of values returned by numpy functions, to make their dtypes take into account the state of the ``jax_enable_x64`` and ``jax_default_dtype_bits`` flags. """ arr = np.asarray(arr) dtype = _dtypes._default_types.get(arr.dtype.kind) return arr.astype(_dtypes.canonicalize_dtype(dtype)) if dtype else arr def with_jax_dtype_defaults(func, use_defaults=True): """Return a version of a function with outputs that match JAX's default dtypes. This is generally used to wrap numpy functions within tests, in order to make their default output dtypes match those of corresponding JAX functions, taking into account the state of the ``jax_enable_x64`` and ``jax_default_dtype_bits`` flags. Args: use_defaults : whether to convert any given output to the default dtype. May be a single boolean, in which case it specifies the conversion for all outputs, or may be a pytree with the same structure as the function output. """ @functools.wraps(func) def wrapped(*args, **kwargs): result = func(*args, **kwargs) if isinstance(use_defaults, bool): return tree_map(to_default_dtype, result) if use_defaults else result else: f = lambda arr, use_default: to_default_dtype(arr) if use_default else arr return tree_map(f, result, use_defaults) return wrapped def is_sequence(x): try: iter(x) except TypeError: return False else: return True def _normalize_tolerance(tol): tol = tol or 0 if isinstance(tol, dict): return {np.dtype(k): v for k, v in tol.items()} else: return {k: tol for k in _default_tolerance} def join_tolerance(tol1, tol2): tol1 = _normalize_tolerance(tol1) tol2 = _normalize_tolerance(tol2) out = tol1 for k, v in tol2.items(): out[k] = max(v, tol1.get(k, 0)) return out def check_eq(xs, ys, err_msg=''): assert_close = partial(_assert_numpy_allclose, err_msg=err_msg) tree_all(tree_map(assert_close, xs, ys)) @contextmanager def capture_stdout() -> Generator[Callable[[], str], None, None]: with unittest.mock.patch('sys.stdout', new_callable=io.StringIO) as fp: def _read() -> str: return fp.getvalue() yield _read @contextmanager def count_device_put(): batched_device_put = pxla.batched_device_put count = [0] def make_fn_and_count(fn): def fn_and_count(*args, **kwargs): count[0] += 1 # device_put handlers might call `dispatch.device_put` (e.g. on an # underlying payload or several). We only want to count these # recursive puts once, so we skip counting more than the outermost # one in such a call stack. pxla.batched_device_put = batched_device_put try: return fn(*args, **kwargs) finally: pxla.batched_device_put = batched_device_put_and_count return fn_and_count batched_device_put_and_count = make_fn_and_count(batched_device_put) pxla.batched_device_put = batched_device_put_and_count try: yield count finally: pxla.batched_device_put = batched_device_put @contextmanager def count_primitive_compiles(): dispatch.xla_primitive_callable.cache_clear() count = [-1] try: yield count finally: count[0] = dispatch.xla_primitive_callable.cache_info().misses @contextmanager def count_device_put_fast_path_hit(): original_fn = xc.copy_array_to_devices_with_sharding count = [0] def copy_array_to_devices_with_sharding_and_count(*args, **kwargs): count[0] += 1 return original_fn(*args, **kwargs) xc.copy_array_to_devices_with_sharding = copy_array_to_devices_with_sharding_and_count try: yield count finally: xc.copy_array_to_devices_with_sharding = original_fn @contextmanager def count_pjit_cpp_cache_miss(): original_pjit_lower = pjit_lib._pjit_lower count = [0] def pjit_lower_and_count(*args, **kwargs): count[0] += 1 return original_pjit_lower(*args, **kwargs) pjit_lib._pjit_lower = pjit_lower_and_count try: yield count finally: pjit_lib._pjit_lower = original_pjit_lower @contextmanager def count_jit_tracing_cache_miss(): original_create_pjit_jaxpr = pjit_lib._create_pjit_jaxpr count = [0] @lu.cache def create_pjit_jaxpr_and_count(*args): count[0] += 1 return original_create_pjit_jaxpr(*args) pjit_lib._create_pjit_jaxpr = create_pjit_jaxpr_and_count try: yield count finally: pjit_lib._create_pjit_jaxpr = original_create_pjit_jaxpr @contextmanager def count_aot_jit_cpp_cache_miss(): original_call = stages.Compiled.call count = [0] def compiled_call_count(*args, **kwargs): count[0] += 1 return original_call(*args, **kwargs) stages.Compiled.call = compiled_call_count try: yield count finally: stages.Compiled.call = original_call @contextmanager def count_jit_and_pmap_compiles(): # No need to clear any caches since we generally jit and pmap fresh callables # in tests. mlir_lower = mlir.lower_jaxpr_to_module count = [0] def mlir_lower_and_count(*args, **kwargs): count[0] += 1 return mlir_lower(*args, **kwargs) mlir.lower_jaxpr_to_module = mlir_lower_and_count try: yield count finally: mlir.lower_jaxpr_to_module = mlir_lower @contextmanager def count_subjaxpr_to_hlo_conversion(fun_name: str): # No need to clear any caches since we generally jit and pmap fresh callables # in tests. mlir_lower = mlir.lower_jaxpr_to_fun count = [0] def mlir_lower_and_count(ctx, name, *args, **kwargs): if name == fun_name: count[0] += 1 return mlir_lower(ctx, name, *args, **kwargs) mlir.lower_jaxpr_to_fun = mlir_lower_and_count try: yield count finally: mlir.lower_jaxpr_to_fun = mlir_lower @contextmanager def assert_num_jit_and_pmap_compilations(times): with count_jit_and_pmap_compiles() as count: yield if count[0] != times: raise AssertionError(f"Expected exactly {times} XLA compilations, " f"but executed {count[0]}") def device_under_test(): return _TEST_DUT.value or xla_bridge.get_backend().platform def supported_dtypes(): if device_under_test() == "tpu": types = {np.bool_, np.int8, np.int16, np.int32, np.uint8, np.uint16, np.uint32, _dtypes.bfloat16, np.float16, np.float32, np.complex64} elif device_under_test() == "iree": types = {np.bool_, np.int8, np.int16, np.int32, np.uint8, np.uint16, np.uint32, np.float32} elif device_under_test() == "METAL": types = {np.int32, np.uint32, np.float32} else: types = {np.bool_, np.int8, np.int16, np.int32, np.int64, np.uint8, np.uint16, np.uint32, np.uint64, _dtypes.bfloat16, np.float16, np.float32, np.float64, np.complex64, np.complex128} if not config.enable_x64.value: types -= {np.uint64, np.int64, np.float64, np.complex128} return types def is_device_rocm(): return xla_bridge.get_backend().platform_version.startswith('rocm') def is_device_cuda(): return 'cuda' in xla_bridge.get_backend().platform_version def is_cloud_tpu(): return running_in_cloud_tpu_vm # Returns True if it is not cloud TPU. If it is cloud TPU, returns True if it is # built at least `date``. # TODO(b/327203806): after libtpu adds a XLA version and the oldest support # libtpu contains the XLA version, remove using built time to skip tests. def if_cloud_tpu_at_least(date: datetime.date): if not is_cloud_tpu(): return True # The format of Cloud TPU platform_version is like: # PJRT C API # TFRT TPU v2 # Built on Oct 30 2023 03:04:42 (1698660263) cl/577737722 platform_version = xla_bridge.get_backend().platform_version.split('\n')[-1] results = re.findall(r'\(.*?\)', platform_version) if len(results) != 1: return True build_date = date.fromtimestamp(int(results[0][1:-1])) return build_date >= date def pjrt_c_api_version_at_least(major_version: int, minor_version: int): pjrt_c_api_versions = xla_bridge.backend_pjrt_c_api_version() if pjrt_c_api_versions is None: return True return pjrt_c_api_versions >= (major_version, minor_version) def get_tpu_version() -> int: if device_under_test() != "tpu": raise ValueError("Device is not TPU") kind = jax.devices()[0].device_kind if kind.endswith(' lite'): kind = kind[:-len(' lite')] assert kind[:-1] == "TPU v", kind return int(kind[-1]) def is_device_tpu_at_least(version: int) -> bool: if device_under_test() != "tpu": return False return get_tpu_version() >= version def is_device_tpu(version: int | None = None, variant: str = "") -> bool: if device_under_test() != "tpu": return False if version is None: return True device_kind = jax.devices()[0].device_kind expected_version = f"v{version}{variant}" # Special case v5e until the name is updated in device_kind if expected_version == "v5e": return "v5 lite" in device_kind return expected_version in device_kind def is_device_gpu_at_least(capability: str) -> bool: if device_under_test() != "gpu": return False d, *_ = jax.local_devices(backend="gpu") return d.compute_capability >= capability def _get_device_tags(): """returns a set of tags defined for the device under test""" if is_device_rocm(): device_tags = {device_under_test(), "rocm"} elif is_device_cuda(): device_tags = {device_under_test(), "cuda"} elif device_under_test() == "METAL": device_tags = {device_under_test(), "gpu"} else: device_tags = {device_under_test()} return device_tags def test_device_matches(device_types: Iterable[str]) -> bool: assert not isinstance( device_types, str ), 'device_types should be a list of strings' tags = _get_device_tags() for device_type in device_types: assert isinstance(device_type, str), device_type if device_type in tags: return True return False test_device_matches.__test__ = False # This isn't a test case, pytest. def _device_filter(predicate): def skip(test_method): @functools.wraps(test_method) def test_method_wrapper(self, *args, **kwargs): device_tags = _get_device_tags() if not predicate(): test_name = getattr(test_method, '__name__', '[unknown test]') raise unittest.SkipTest( f"{test_name} not supported on device with tags {device_tags}.") return test_method(self, *args, **kwargs) return test_method_wrapper return skip def skip_on_devices(*disabled_devices): """A decorator for test methods to skip the test on certain devices.""" return _device_filter(lambda: not test_device_matches(disabled_devices)) def run_on_devices(*enabled_devices): """A decorator for test methods to run the test only on certain devices.""" return _device_filter(lambda: test_device_matches(enabled_devices)) def device_supports_buffer_donation(): """A decorator for test methods to run the test only on devices that support buffer donation.""" return _device_filter( lambda: test_device_matches(mlir._platforms_with_donation) ) def set_host_platform_device_count(nr_devices: int): """Returns a closure that undoes the operation.""" prev_xla_flags = os.getenv("XLA_FLAGS") flags_str = prev_xla_flags or "" # Don't override user-specified device count, or other XLA flags. if "xla_force_host_platform_device_count" not in flags_str: os.environ["XLA_FLAGS"] = (flags_str + f" --xla_force_host_platform_device_count={nr_devices}") # Clear any cached backends so new CPU backend will pick up the env var. xla_bridge.get_backend.cache_clear() def undo(): if prev_xla_flags is None: del os.environ["XLA_FLAGS"] else: os.environ["XLA_FLAGS"] = prev_xla_flags xla_bridge.get_backend.cache_clear() return undo def skip_on_flag(flag_name, skip_value): """A decorator for test methods to skip the test when flags are set.""" def skip(test_method): # pylint: disable=missing-docstring @functools.wraps(test_method) def test_method_wrapper(self, *args, **kwargs): flag_value = config._read(flag_name) if flag_value == skip_value: test_name = getattr(test_method, '__name__', '[unknown test]') raise unittest.SkipTest( f"{test_name} not supported when FLAGS.{flag_name} is {flag_value}") return test_method(self, *args, **kwargs) return test_method_wrapper return skip def pytest_mark_if_available(marker: str): """A decorator for test classes or methods to pytest.mark if installed.""" def wrap(func_or_class): try: import pytest except ImportError: return func_or_class return getattr(pytest.mark, marker)(func_or_class) return wrap def format_test_name_suffix(opname, shapes, dtypes): arg_descriptions = (format_shape_dtype_string(shape, dtype) for shape, dtype in zip(shapes, dtypes)) return '{}_{}'.format(opname.capitalize(), '_'.join(arg_descriptions)) # We use special symbols, represented as singleton objects, to distinguish # between NumPy scalars, Python scalars, and 0-D arrays. class ScalarShape: def __len__(self): return 0 def __getitem__(self, i): raise IndexError(f"index {i} out of range.") class _NumpyScalar(ScalarShape): pass class _PythonScalar(ScalarShape): pass NUMPY_SCALAR_SHAPE = _NumpyScalar() PYTHON_SCALAR_SHAPE = _PythonScalar() # Some shape combinations don't make sense. def is_valid_shape(shape, dtype): if shape == PYTHON_SCALAR_SHAPE: return dtype == np.dtype(type(np.array(0, dtype=dtype).item())) return True def _dims_of_shape(shape): """Converts `shape` to a tuple of dimensions.""" if type(shape) in (list, tuple): return shape elif isinstance(shape, ScalarShape): return () elif np.ndim(shape) == 0: return (shape,) else: raise TypeError(type(shape)) def _cast_to_shape(value, shape, dtype): """Casts `value` to the correct Python type for `shape` and `dtype`.""" if shape is NUMPY_SCALAR_SHAPE: # explicitly cast to NumPy scalar in case `value` is a Python scalar. return np.dtype(dtype).type(value) elif shape is PYTHON_SCALAR_SHAPE: # explicitly cast to Python scalar via https://stackoverflow.com/a/11389998 return np.asarray(value).item() elif type(shape) in (list, tuple): assert np.shape(value) == tuple(shape) return value elif np.ndim(shape) == 0: assert np.shape(value) == (shape,) return value else: raise TypeError(type(shape)) def dtype_str(dtype): return np.dtype(dtype).name def format_shape_dtype_string(shape, dtype): if isinstance(shape, np.ndarray): return f'{dtype_str(dtype)}[{shape}]' elif isinstance(shape, list): shape = tuple(shape) return _format_shape_dtype_string(shape, dtype) @functools.lru_cache(maxsize=64) def _format_shape_dtype_string(shape, dtype): if shape is NUMPY_SCALAR_SHAPE: return dtype_str(dtype) elif shape is PYTHON_SCALAR_SHAPE: return 'py' + dtype_str(dtype) elif type(shape) is tuple: shapestr = ','.join(str(dim) for dim in shape) return f'{dtype_str(dtype)}[{shapestr}]' elif type(shape) is int: return f'{dtype_str(dtype)}[{shape},]' else: raise TypeError(type(shape)) def _rand_dtype(rand, shape, dtype, scale=1., post=lambda x: x): """Produce random values given shape, dtype, scale, and post-processor. Args: rand: a function for producing random values of a given shape, e.g. a bound version of either np.RandomState.randn or np.RandomState.rand. shape: a shape value as a tuple of positive integers. dtype: a numpy dtype. scale: optional, a multiplicative scale for the random values (default 1). post: optional, a callable for post-processing the random values (default identity). Returns: An ndarray of the given shape and dtype using random values based on a call to rand but scaled, converted to the appropriate dtype, and post-processed. """ if _dtypes.issubdtype(dtype, np.unsignedinteger): r = lambda: np.asarray(scale * abs(rand(*_dims_of_shape(shape)))).astype(dtype) else: r = lambda: np.asarray(scale * rand(*_dims_of_shape(shape))).astype(dtype) if _dtypes.issubdtype(dtype, np.complexfloating): vals = r() + 1.0j * r() else: vals = r() return _cast_to_shape(np.asarray(post(vals), dtype), shape, dtype) def rand_fullrange(rng, standardize_nans=False): """Random numbers that span the full range of available bits.""" def gen(shape, dtype, post=lambda x: x): dtype = np.dtype(dtype) size = dtype.itemsize * math.prod(_dims_of_shape(shape)) vals = rng.randint(0, np.iinfo(np.uint8).max, size=size, dtype=np.uint8) vals = post(vals).view(dtype) if shape is PYTHON_SCALAR_SHAPE: # Sampling from the full range of the largest available uint type # leads to overflows in this case; sample from signed ints instead. if dtype == np.uint64: vals = vals.astype(np.int64) elif dtype == np.uint32 and not config.enable_x64.value: vals = vals.astype(np.int32) vals = vals.reshape(shape) # Non-standard NaNs cause errors in numpy equality assertions. if standardize_nans and np.issubdtype(dtype, np.floating): vals[np.isnan(vals)] = np.nan return _cast_to_shape(vals, shape, dtype) return gen def rand_default(rng, scale=3): return partial(_rand_dtype, rng.randn, scale=scale) def rand_nonzero(rng): post = lambda x: np.where(x == 0, np.array(1, dtype=x.dtype), x) return partial(_rand_dtype, rng.randn, scale=3, post=post) def rand_positive(rng): post = lambda x: x + 1 return partial(_rand_dtype, rng.rand, scale=2, post=post) def rand_small(rng): return partial(_rand_dtype, rng.randn, scale=1e-3) def rand_not_small(rng, offset=10.): post = lambda x: x + np.where(x > 0, offset, -offset) return partial(_rand_dtype, rng.randn, scale=3., post=post) def rand_small_positive(rng): return partial(_rand_dtype, rng.rand, scale=2e-5) def rand_uniform(rng, low=0.0, high=1.0): assert low < high post = lambda x: x * (high - low) + low return partial(_rand_dtype, rng.rand, post=post) def rand_some_equal(rng): def post(x): x_ravel = x.ravel() if len(x_ravel) == 0: return x flips = rng.rand(*np.shape(x)) < 0.5 return np.where(flips, x_ravel[0], x) return partial(_rand_dtype, rng.randn, scale=100., post=post) def rand_some_inf(rng): """Return a random sampler that produces infinities in floating types.""" base_rand = rand_default(rng) # TODO: Complex numbers are not correctly tested # If blocks should be switched in order, and relevant tests should be fixed def rand(shape, dtype): """The random sampler function.""" if not _dtypes.issubdtype(dtype, np.floating): # only float types have inf return base_rand(shape, dtype) if _dtypes.issubdtype(dtype, np.complexfloating): base_dtype = np.real(np.array(0, dtype=dtype)).dtype out = (rand(shape, base_dtype) + np.array(1j, dtype) * rand(shape, base_dtype)) return _cast_to_shape(out, shape, dtype) dims = _dims_of_shape(shape) posinf_flips = rng.rand(*dims) < 0.1 neginf_flips = rng.rand(*dims) < 0.1 vals = base_rand(shape, dtype) vals = np.where(posinf_flips, np.array(np.inf, dtype=dtype), vals) vals = np.where(neginf_flips, np.array(-np.inf, dtype=dtype), vals) return _cast_to_shape(np.asarray(vals, dtype=dtype), shape, dtype) return rand def rand_some_nan(rng): """Return a random sampler that produces nans in floating types.""" base_rand = rand_default(rng) def rand(shape, dtype): """The random sampler function.""" if _dtypes.issubdtype(dtype, np.complexfloating): base_dtype = np.real(np.array(0, dtype=dtype)).dtype out = (rand(shape, base_dtype) + np.array(1j, dtype) * rand(shape, base_dtype)) return _cast_to_shape(out, shape, dtype) if not _dtypes.issubdtype(dtype, np.floating): # only float types have inf return base_rand(shape, dtype) dims = _dims_of_shape(shape) r = rng.rand(*dims) nan_flips = r < 0.1 neg_nan_flips = r < 0.05 vals = base_rand(shape, dtype) vals = np.where(nan_flips, np.array(np.nan, dtype=dtype), vals) vals = np.where(neg_nan_flips, np.array(-np.nan, dtype=dtype), vals) return _cast_to_shape(np.asarray(vals, dtype=dtype), shape, dtype) return rand def rand_some_inf_and_nan(rng): """Return a random sampler that produces infinities in floating types.""" base_rand = rand_default(rng) # TODO: Complex numbers are not correctly tested # If blocks should be switched in order, and relevant tests should be fixed def rand(shape, dtype): """The random sampler function.""" if not _dtypes.issubdtype(dtype, np.floating): # only float types have inf return base_rand(shape, dtype) if _dtypes.issubdtype(dtype, np.complexfloating): base_dtype = np.real(np.array(0, dtype=dtype)).dtype out = (rand(shape, base_dtype) + np.array(1j, dtype) * rand(shape, base_dtype)) return _cast_to_shape(out, shape, dtype) dims = _dims_of_shape(shape) posinf_flips = rng.rand(*dims) < 0.1 neginf_flips = rng.rand(*dims) < 0.1 nan_flips = rng.rand(*dims) < 0.1 vals = base_rand(shape, dtype) vals = np.where(posinf_flips, np.array(np.inf, dtype=dtype), vals) vals = np.where(neginf_flips, np.array(-np.inf, dtype=dtype), vals) vals = np.where(nan_flips, np.array(np.nan, dtype=dtype), vals) return _cast_to_shape(np.asarray(vals, dtype=dtype), shape, dtype) return rand # TODO(mattjj): doesn't handle complex types def rand_some_zero(rng): """Return a random sampler that produces some zeros.""" base_rand = rand_default(rng) def rand(shape, dtype): """The random sampler function.""" dims = _dims_of_shape(shape) zeros = rng.rand(*dims) < 0.5 vals = base_rand(shape, dtype) vals = np.where(zeros, np.array(0, dtype=dtype), vals) return _cast_to_shape(np.asarray(vals, dtype=dtype), shape, dtype) return rand def rand_int(rng, low=0, high=None): def fn(shape, dtype): nonlocal high gen_dtype = dtype if np.issubdtype(dtype, np.integer) else np.int64 if low == 0 and high is None: if np.issubdtype(dtype, np.integer): high = np.iinfo(dtype).max else: raise ValueError("rand_int requires an explicit `high` value for " "non-integer types.") return rng.randint(low, high=high, size=shape, dtype=gen_dtype).astype(dtype) return fn def rand_unique_int(rng, high=None): def fn(shape, dtype): return rng.choice(np.arange(high or math.prod(shape), dtype=dtype), size=shape, replace=False) return fn def rand_bool(rng): def generator(shape, dtype): return _cast_to_shape( np.asarray(rng.rand(*_dims_of_shape(shape)) < 0.5, dtype=dtype), shape, dtype) return generator def check_raises(thunk, err_type, msg): try: thunk() assert False except err_type as e: assert str(e).startswith(msg), f"\n{e}\n\n{msg}\n" def check_raises_regexp(thunk, err_type, pattern): try: thunk() assert False except err_type as e: assert re.match(pattern, str(e)), f"{e}\n\n{pattern}\n" def iter_eqns(jaxpr): # TODO(necula): why doesn't this search in params? yield from jaxpr.eqns for subjaxpr in core.subjaxprs(jaxpr): yield from iter_eqns(subjaxpr) def assert_dot_precision(expected_precision, fun, *args): jaxpr = api.make_jaxpr(fun)(*args) precisions = [eqn.params['precision'] for eqn in iter_eqns(jaxpr.jaxpr) if eqn.primitive == lax.dot_general_p] for precision in precisions: msg = f"Unexpected precision: {expected_precision} != {precision}" if isinstance(precision, tuple): assert precision[0] == expected_precision, msg assert precision[1] == expected_precision, msg else: assert precision == expected_precision, msg def assert_dot_preferred_element_type(expected, fun, *args, **kwargs): jaxpr = api.make_jaxpr(partial(fun, **kwargs))(*args) pref_eltypes = [eqn.params['preferred_element_type'] for eqn in iter_eqns(jaxpr.jaxpr) if eqn.primitive == lax.dot_general_p] for pref_eltype in pref_eltypes: msg = f"Unexpected preferred_element_type: {expected} != {pref_eltype}" assert expected == pref_eltype, msg def cases_from_gens(*gens): sizes = [1, 3, 10] cases_per_size = int(NUM_GENERATED_CASES.value / len(sizes)) + 1 for size in sizes: for i in range(cases_per_size): yield (f'_{size}_{i}',) + tuple(gen(size) for gen in gens) def named_cases_from_sampler(gen): seen = set() retries = 0 rng = npr.RandomState(42) def choose_one(x): if not isinstance(x, (list, tuple)): x = list(x) return [x[rng.randint(len(x))]] while (len(seen) < NUM_GENERATED_CASES.value and retries < _MAX_CASES_SAMPLING_RETRIES.value): retries += 1 cases = list(gen(choose_one)) if not cases: continue if len(cases) > 1: raise RuntimeError("Generator is expected to only return a single case when sampling") case = cases[0] if case["testcase_name"] in seen: continue retries = 0 seen.add(case["testcase_name"]) yield case # Random sampling for every parameterized test is expensive. Do it once and # cache the result. @functools.cache def _choice(n, m): rng = np.random.RandomState(42) return rng.choice(n, size=m, replace=False) def sample_product_testcases(*args, **kw): """Non-decorator form of sample_product.""" args = [list(arg) for arg in args] kw = [(k, list(v)) for k, v in kw.items()] n = math.prod(len(a) for a in args) * math.prod(len(v) for _, v in kw) testcases = [] for i in _choice(n, min(n, NUM_GENERATED_CASES.value)): testcase = {} for a in args: testcase.update(a[i % len(a)]) i //= len(a) for k, v in kw: testcase[k] = v[i % len(v)] i //= len(v) testcases.append(testcase) return testcases def sample_product(*args, **kw): """Decorator that samples from a cartesian product of test cases. Similar to absltest.parameterized.product(), except that it samples from the cartesian product rather than returning the whole thing. Arguments: *args: each positional argument is a list of dictionaries. The entries in a dictionary correspond to name=value argument pairs; one dictionary will be chosen for each test case. This allows multiple parameters to be correlated. **kw: each keyword argument is a list of values. One value will be chosen for each test case. """ return parameterized.parameters(*sample_product_testcases(*args, **kw)) class JaxTestLoader(absltest.TestLoader): def getTestCaseNames(self, testCaseClass): names = super().getTestCaseNames(testCaseClass) if _TEST_TARGETS.value: pattern = re.compile(_TEST_TARGETS.value) names = [name for name in names if pattern.search(f"{testCaseClass.__name__}.{name}")] if _EXCLUDE_TEST_TARGETS.value: pattern = re.compile(_EXCLUDE_TEST_TARGETS.value) names = [name for name in names if not pattern.search(f"{testCaseClass.__name__}.{name}")] return names def with_config(**kwds): """Test case decorator for subclasses of JaxTestCase""" def decorator(cls): assert inspect.isclass(cls) and issubclass(cls, JaxTestCase), "@with_config can only wrap JaxTestCase class definitions." cls._default_config = {} for b in cls.__bases__: cls._default_config.update(b._default_config) cls._default_config.update(kwds) return cls return decorator def promote_like_jnp(fun, inexact=False): """Decorator that promotes the arguments of `fun` to `jnp.result_type(*args)`. jnp and np have different type promotion semantics; this decorator allows tests make an np reference implementation act more like a jnp implementation. """ _promote = promote_dtypes_inexact if inexact else promote_dtypes def wrapper(*args, **kw): flat_args, tree = tree_flatten(args) args = tree_unflatten(tree, _promote(*flat_args)) return fun(*args, **kw) return wrapper class JaxTestCase(parameterized.TestCase): """Base class for JAX tests including numerical checks and boilerplate.""" _default_config = { 'jax_enable_checks': True, 'jax_numpy_dtype_promotion': 'strict', 'jax_numpy_rank_promotion': 'raise', 'jax_traceback_filtering': 'off', 'jax_legacy_prng_key': 'error', } _compilation_cache_exit_stack: ExitStack | None = None # TODO(mattjj): this obscures the error messages from failures, figure out how # to re-enable it # def tearDown(self) -> None: # assert core.reset_trace_state() def setUp(self): super().setUp() self._original_config = {} for key, value in self._default_config.items(): self._original_config[key] = config._read(key) config.update(key, value) # We use the adler32 hash for two reasons. # a) it is deterministic run to run, unlike hash() which is randomized. # b) it returns values in int32 range, which RandomState requires. self._rng = npr.RandomState(zlib.adler32(self._testMethodName.encode())) def tearDown(self): for key, value in self._original_config.items(): config.update(key, value) super().tearDown() @classmethod def setUpClass(cls): if TEST_WITH_PERSISTENT_COMPILATION_CACHE.value: cls._compilation_cache_exit_stack = ExitStack() stack = cls._compilation_cache_exit_stack stack.enter_context(config.enable_compilation_cache(True)) stack.enter_context(config.raise_persistent_cache_errors(True)) stack.enter_context(config.persistent_cache_min_compile_time_secs(0)) stack.enter_context(config.persistent_cache_min_entry_size_bytes(0)) tmp_dir = stack.enter_context(tempfile.TemporaryDirectory()) compilation_cache.set_cache_dir(tmp_dir) stack.callback(lambda: compilation_cache.reset_cache()) @classmethod def tearDownClass(cls): if TEST_WITH_PERSISTENT_COMPILATION_CACHE.value: cls._compilation_cache_exit_stack.close() def rng(self): return self._rng def assertArraysEqual(self, x, y, *, check_dtypes=True, err_msg='', allow_object_dtype=False, verbose=True): """Assert that x and y arrays are exactly equal.""" if check_dtypes: self.assertDtypesMatch(x, y) x = np.asarray(x) y = np.asarray(y) if (not allow_object_dtype) and (x.dtype == object or y.dtype == object): # See https://github.com/google/jax/issues/17867 raise TypeError( "assertArraysEqual may be poorly behaved when np.asarray casts to dtype=object. " "If comparing PRNG keys, consider random_test.KeyArrayTest.assertKeysEqual. " "If comparing collections of arrays, consider using assertAllClose. " "To let this test proceed anyway, pass allow_object_dtype=True.") # Work around https://github.com/numpy/numpy/issues/18992 with np.errstate(over='ignore'): np.testing.assert_array_equal(x, y, err_msg=err_msg, verbose=verbose) def assertArraysAllClose(self, x, y, *, check_dtypes=True, atol=None, rtol=None, err_msg=''): """Assert that x and y are close (up to numerical tolerances).""" self.assertEqual(x.shape, y.shape) atol = max(tolerance(_dtype(x), atol), tolerance(_dtype(y), atol)) rtol = max(tolerance(_dtype(x), rtol), tolerance(_dtype(y), rtol)) _assert_numpy_allclose(x, y, atol=atol, rtol=rtol, err_msg=err_msg) if check_dtypes: self.assertDtypesMatch(x, y) def assertDtypesMatch(self, x, y, *, canonicalize_dtypes=True): if not config.enable_x64.value and canonicalize_dtypes: self.assertEqual(_dtypes.canonicalize_dtype(_dtype(x), allow_extended_dtype=True), _dtypes.canonicalize_dtype(_dtype(y), allow_extended_dtype=True)) else: self.assertEqual(_dtype(x), _dtype(y)) def assertAllClose(self, x, y, *, check_dtypes=True, atol=None, rtol=None, canonicalize_dtypes=True, err_msg=''): """Assert that x and y, either arrays or nested tuples/lists, are close.""" if isinstance(x, dict): self.assertIsInstance(y, dict) self.assertEqual(set(x.keys()), set(y.keys())) for k in x.keys(): self.assertAllClose(x[k], y[k], check_dtypes=check_dtypes, atol=atol, rtol=rtol, canonicalize_dtypes=canonicalize_dtypes, err_msg=err_msg) elif is_sequence(x) and not hasattr(x, '__array__'): self.assertTrue(is_sequence(y) and not hasattr(y, '__array__')) self.assertEqual(len(x), len(y)) for x_elt, y_elt in zip(x, y): self.assertAllClose(x_elt, y_elt, check_dtypes=check_dtypes, atol=atol, rtol=rtol, canonicalize_dtypes=canonicalize_dtypes, err_msg=err_msg) elif hasattr(x, '__array__') or np.isscalar(x): self.assertTrue(hasattr(y, '__array__') or np.isscalar(y)) if check_dtypes: self.assertDtypesMatch(x, y, canonicalize_dtypes=canonicalize_dtypes) x = np.asarray(x) y = np.asarray(y) self.assertArraysAllClose(x, y, check_dtypes=False, atol=atol, rtol=rtol, err_msg=err_msg) elif x == y: return else: raise TypeError((type(x), type(y))) def assertMultiLineStrippedEqual(self, expected, what): """Asserts two strings are equal, after dedenting and stripping each line.""" expected = textwrap.dedent(expected) what = textwrap.dedent(what) ignore_space_re = re.compile(r'\s*\n\s*') expected_clean = re.sub(ignore_space_re, '\n', expected.strip()) what_clean = re.sub(ignore_space_re, '\n', what.strip()) if what_clean != expected_clean: # Print it so we can copy-and-paste it into the test print(f"Found\n{what}\n") self.assertMultiLineEqual(expected_clean, what_clean, msg=f"Found\n{what}\nExpecting\n{expected}") @contextmanager def assertNoWarnings(self): with warnings.catch_warnings(): warnings.simplefilter("error") yield def _CompileAndCheck(self, fun, args_maker, *, check_dtypes=True, tol=None, rtol=None, atol=None, check_cache_misses=True): """Helper method for running JAX compilation and allclose assertions.""" args = args_maker() def wrapped_fun(*args): self.assertTrue(python_should_be_executing) return fun(*args) python_should_be_executing = True python_ans = fun(*args) python_shapes = tree_map(lambda x: np.shape(x), python_ans) np_shapes = tree_map(lambda x: np.shape(np.asarray(x)), python_ans) self.assertEqual(python_shapes, np_shapes) cache_misses = dispatch.xla_primitive_callable.cache_info().misses python_ans = fun(*args) if check_cache_misses: self.assertEqual( cache_misses, dispatch.xla_primitive_callable.cache_info().misses, "Compilation detected during second call of {} in op-by-op " "mode.".format(fun)) cfun = api.jit(wrapped_fun) python_should_be_executing = True monitored_ans = cfun(*args) python_should_be_executing = False compiled_ans = cfun(*args) self.assertAllClose(python_ans, monitored_ans, check_dtypes=check_dtypes, atol=atol or tol, rtol=rtol or tol) self.assertAllClose(python_ans, compiled_ans, check_dtypes=check_dtypes, atol=atol or tol, rtol=rtol or tol) args = args_maker() python_should_be_executing = True python_ans = fun(*args) python_should_be_executing = False compiled_ans = cfun(*args) self.assertAllClose(python_ans, compiled_ans, check_dtypes=check_dtypes, atol=atol or tol, rtol=rtol or tol) def _CheckAgainstNumpy(self, numpy_reference_op, lax_op, args_maker, check_dtypes=True, tol=None, atol=None, rtol=None, canonicalize_dtypes=True): args = args_maker() lax_ans = lax_op(*args) numpy_ans = numpy_reference_op(*args) self.assertAllClose(numpy_ans, lax_ans, check_dtypes=check_dtypes, atol=atol or tol, rtol=rtol or tol, canonicalize_dtypes=canonicalize_dtypes) _PJIT_IMPLEMENTATION = jax.jit _PJIT_IMPLEMENTATION._name = "jit" _NOOP_JIT_IMPLEMENTATION = lambda x, *args, **kwargs: x _NOOP_JIT_IMPLEMENTATION._name = "noop" JIT_IMPLEMENTATION = ( _PJIT_IMPLEMENTATION, _NOOP_JIT_IMPLEMENTATION, ) class BufferDonationTestCase(JaxTestCase): def assertDeleted(self, x): self.assertTrue(x.is_deleted()) def assertNotDeleted(self, x): self.assertFalse(x.is_deleted()) @contextmanager def ignore_warning(*, message='', category=Warning, **kw): with warnings.catch_warnings(): warnings.filterwarnings("ignore", message=message, category=category, **kw) yield # -------------------- Mesh parametrization helpers -------------------- MeshSpec = list[tuple[str, int]] @contextmanager def with_mesh(named_shape: MeshSpec) -> Generator[None, None, None]: """Test utility for setting up meshes given mesh data from `schedules`.""" # This is similar to the `with_mesh` function above, but isn't a decorator. axis_names, shape = unzip2(named_shape) size = math.prod(shape) local_devices = list(jax.local_devices()) if len(local_devices) < size: raise unittest.SkipTest(f"Test requires {size} local devices") mesh_devices = np.array(local_devices[:size]).reshape(shape) # type: ignore with jax.sharding.Mesh(mesh_devices, axis_names): yield def with_mesh_from_kwargs(f): return lambda *args, **kwargs: with_mesh(kwargs['mesh'])(f)(*args, **kwargs) def with_and_without_mesh(f): return parameterized.named_parameters( {"testcase_name": name, "mesh": mesh, "axis_resources": axis_resources} for name, mesh, axis_resources in ( ('', (), ()), ('Mesh', (('x', 2),), (('i', 'x'),)) ))(with_mesh_from_kwargs(f)) def create_global_mesh(mesh_shape, axis_names): size = math.prod(mesh_shape) if len(jax.devices()) < size: raise unittest.SkipTest(f"Test requires {size} global devices.") devices = sorted(jax.devices(), key=lambda d: d.id) mesh_devices = np.array(devices[:size]).reshape(mesh_shape) global_mesh = jax.sharding.Mesh(mesh_devices, axis_names) return global_mesh class _cached_property: null = object() def __init__(self, method): self._method = method self._value = self.null def __get__(self, obj, cls): if self._value is self.null: self._value = self._method(obj) return self._value class _LazyDtypes: """A class that unifies lists of supported dtypes. These could be module-level constants, but device_under_test() is not always known at import time, so we need to define these lists lazily. """ def supported(self, dtypes): supported = supported_dtypes() return type(dtypes)(d for d in dtypes if d in supported) @_cached_property def custom_floats(self): return [np.dtype(t) for t in [ _dtypes.bfloat16, _dtypes.float8_e4m3b11fnuz, _dtypes.float8_e4m3fn, _dtypes.float8_e4m3fnuz, _dtypes.float8_e5m2, _dtypes.float8_e5m2fnuz]] @_cached_property def floating(self): return self.supported([np.float32, np.float64]) @_cached_property def all_floating(self): return self.supported([_dtypes.bfloat16, np.float16, np.float32, np.float64]) @_cached_property def integer(self): return self.supported([np.int32, np.int64]) @_cached_property def all_integer(self): return self.supported([ _dtypes.int4, np.int8, np.int16, np.int32, np.int64]) @_cached_property def unsigned(self): return self.supported([np.uint32, np.uint64]) @_cached_property def all_unsigned(self): return self.supported([ _dtypes.uint4, np.uint8, np.uint16, np.uint32, np.uint64]) @_cached_property def complex(self): return self.supported([np.complex64, np.complex128]) @_cached_property def boolean(self): return self.supported([np.bool_]) @_cached_property def inexact(self): return self.floating + self.complex @_cached_property def all_inexact(self): return self.all_floating + self.complex @_cached_property def numeric(self): return self.floating + self.integer + self.unsigned + self.complex @_cached_property def all(self): return (self.all_floating + self.all_integer + self.all_unsigned + self.complex + self.boolean) dtypes = _LazyDtypes() def strict_promotion_if_dtypes_match(dtypes): """ Context manager to enable strict promotion if all dtypes match, and enable standard dtype promotion otherwise. """ if all(dtype == dtypes[0] for dtype in dtypes): return jax.numpy_dtype_promotion('strict') return jax.numpy_dtype_promotion('standard') _version_regex = re.compile(r"([0-9]+(?:\.[0-9]+)*)(?:(rc|dev).*)?") def parse_version(v: str) -> tuple[int, ...]: m = _version_regex.match(v) if m is None: raise ValueError(f"Unable to parse version '{v}'") return tuple(int(x) for x in m.group(1).split('.')) def numpy_version(): return parse_version(np.__version__) def parameterized_filterable(*, kwargs: Sequence[dict[str, Any]], testcase_name: Callable[[dict[str, Any]], str] | None = None, one_containing: str | None = None, ): """ Decorator for named parameterized tests, with filtering. Works like parameterized.named_parameters, except that it supports the `one_containing` option. This is useful to select only one of the tests, and to leave the test name unchanged (helps with specifying the desired test when debugging). Args: kwargs: Each entry is a set of kwargs to be passed to the test function. testcase_name: Optionally, a function to construct the testcase_name from one kwargs dict. If not given then kwarg may contain `testcase_name` and if not, the test case name is constructed as `str(kwarg)`. We sanitize the test names to work with -k test filters. See `sanitize_test_name`. one_containing: If given, then leave the test name unchanged, and use only one `kwargs` whose `testcase_name` includes `one_containing`. """ # Ensure that all kwargs contain a testcase_name kwargs_with_testcase_name: Sequence[dict[str, Any]] if testcase_name is not None: kwargs_with_testcase_name = [ dict(testcase_name=sanitize_test_name(str(testcase_name(kw))), **kw) for kw in kwargs] else: for kw in kwargs: testcase_name = kw.get("testcase_name") if testcase_name is None: testcase_name = "_".join(f"{k}={kw[k]}" # type: ignore for k in sorted(kw.keys())) kw["testcase_name"] = sanitize_test_name(testcase_name) # type: ignore kwargs_with_testcase_name = kwargs if one_containing is not None: filtered = tuple(kw for kw in kwargs_with_testcase_name if one_containing in kw["testcase_name"]) assert filtered, ( f"No testcase_name contains '{one_containing}'. " "The testcase_name values are\n " + "\n ".join(kw["testcase_name"] for kw in kwargs_with_testcase_name)) kw = filtered[0] kw["testcase_name"] = "" return parameterized.named_parameters([kw]) else: return parameterized.named_parameters(*kwargs_with_testcase_name) @contextmanager def register_event_duration_listener(callback): """Manages registering/unregistering an event duration listener callback.""" try: monitoring.register_event_duration_secs_listener(callback) yield finally: monitoring._unregister_event_duration_listener_by_callback(callback) @contextmanager def set_env(**kwargs): """Context manager to temporarily set/unset one or more environment variables. Example: >>> import os >>> os.environ['my_var'] = 'original' >>> with set_env(my_var=None, other_var='some_value'): ... print("my_var is set:", 'my_var' in os.environ) ... print("other_var =", os.environ['other_var']) ... my_var is set: False other_var = some_value >>> os.environ['my_var'] 'original' >>> 'other_var' in os.environ False """ original = {key: os.environ.pop(key, None) for key in kwargs} os.environ.update({k: v for k, v in kwargs.items() if v is not None}) try: yield finally: _ = [os.environ.pop(key, None) for key in kwargs] os.environ.update({k: v for k, v in original.items() if v is not None}) def fwd_bwd_jaxprs(f, *example_args): fwd_jaxpr, (y_shape, res_shape) = jax.make_jaxpr( lambda *args: jax.vjp(f, *args), return_shape=True)(*example_args) bwd_jaxpr = jax.make_jaxpr(lambda res, outs: res(outs))(res_shape, y_shape) return fwd_jaxpr, bwd_jaxpr def numpy_vecdot(x, y, axis): """Implementation of numpy.vecdot for testing on numpy < 2.0.0""" if numpy_version() >= (2, 0, 0): raise ValueError("should be calling vecdot directly on numpy 2.0.0") x = np.moveaxis(x, axis, -1) y = np.moveaxis(y, axis, -1) x, y = np.broadcast_arrays(x, y) return np.matmul(np.conj(x[..., None, :]), y[..., None])[..., 0, 0] def complex_plane_sample(dtype, size_re=10, size_im=None): """Return a 2-D array of complex numbers that covers the complex plane with a grid of samples. The size of the grid is (3 + 2 * size_im) x (3 + 2 * size_re) that includes infinity points, extreme finite points, and the specified number of points from real and imaginary axis. For example: >>> print(complex_plane_sample(np.complex64, 0, 3)) [[-inf -infj 0. -infj inf -infj] [-inf-3.4028235e+38j 0.-3.4028235e+38j inf-3.4028235e+38j] [-inf-2.0000000e+00j 0.-2.0000000e+00j inf-2.0000000e+00j] [-inf-1.1754944e-38j 0.-1.1754944e-38j inf-1.1754944e-38j] [-inf+0.0000000e+00j 0.+0.0000000e+00j inf+0.0000000e+00j] [-inf+1.1754944e-38j 0.+1.1754944e-38j inf+1.1754944e-38j] [-inf+2.0000000e+00j 0.+2.0000000e+00j inf+2.0000000e+00j] [-inf+3.4028235e+38j 0.+3.4028235e+38j inf+3.4028235e+38j] [-inf +infj 0. +infj inf +infj]] """ if size_im is None: size_im = size_re finfo = np.finfo(dtype) def make_axis_points(size): prec_dps_ratio = 3.3219280948873626 logmin = logmax = finfo.maxexp / prec_dps_ratio logtiny = finfo.minexp / prec_dps_ratio axis_points = np.zeros(3 + 2 * size, dtype=finfo.dtype) with warnings.catch_warnings(): # Silence RuntimeWarning: overflow encountered in cast warnings.simplefilter("ignore") half_neg_line = -np.logspace(logmin, logtiny, size, dtype=finfo.dtype) half_line = -half_neg_line[::-1] axis_points[-size - 1:-1] = half_line axis_points[1:size + 1] = half_neg_line if size > 1: axis_points[1] = finfo.min axis_points[-2] = finfo.max if size > 0: axis_points[size] = -finfo.tiny axis_points[-size - 1] = finfo.tiny axis_points[0] = -np.inf axis_points[-1] = np.inf return axis_points real_axis_points = make_axis_points(size_re) imag_axis_points = make_axis_points(size_im) real_part = real_axis_points.reshape((-1, 3 + 2 * size_re)).repeat(3 + 2 * size_im, 0).astype(dtype) imag_part = imag_axis_points.repeat(2).view(dtype) imag_part.real[:] = 0 imag_part = imag_part.reshape((3 + 2 * size_im, -1)).repeat(3 + 2 * size_re, 1) return real_part + imag_part class vectorize_with_mpmath(np.vectorize): """Same as numpy.vectorize but using mpmath backend for function evaluation. """ map_float_to_complex = dict(float16='complex32', float32='complex64', float64='complex128', float128='complex256', longdouble='clongdouble') map_complex_to_float = {v: k for k, v in map_float_to_complex.items()} float_prec = dict( # float16=11, float32=24, float64=53, # float128=113, # longdouble=113 ) float_minexp = dict( float16=-14, float32=-126, float64=-1022, float128=-16382 ) float_maxexp = dict( float16=16, float32=128, float64=1024, float128=16384, ) def __init__(self, *args, **kwargs): mpmath = kwargs.pop('mpmath', None) if mpmath is None: raise ValueError('vectorize_with_mpmath: no mpmath argument specified') self.extra_prec_multiplier = kwargs.pop('extra_prec_multiplier', 0) self.extra_prec = kwargs.pop('extra_prec', 0) self.mpmath = mpmath self.contexts = dict() self.contexts_inv = dict() for fp_format, prec in self.float_prec.items(): ctx = self.mpmath.mp.clone() ctx.prec = prec self.contexts[fp_format] = ctx self.contexts_inv[ctx] = fp_format super().__init__(*args, **kwargs) def get_context(self, x): if isinstance(x, (np.ndarray, np.floating, np.complexfloating)): fp_format = str(x.dtype) fp_format = self.map_complex_to_float.get(fp_format, fp_format) return self.contexts[fp_format] raise NotImplementedError(f'get mpmath context from {type(x).__name__} instance') def nptomp(self, x): """Convert numpy array/scalar to an array/instance of mpmath number type. """ if isinstance(x, np.ndarray): return np.fromiter(map(self.nptomp, x.flatten()), dtype=object).reshape(x.shape) elif isinstance(x, np.floating): mpmath = self.mpmath ctx = self.get_context(x) prec, rounding = ctx._prec_rounding if np.isposinf(x): return ctx.make_mpf(mpmath.libmp.finf) elif np.isneginf(x): return ctx.make_mpf(mpmath.libmp.fninf) elif np.isnan(x): return ctx.make_mpf(mpmath.libmp.fnan) elif np.isfinite(x): mantissa, exponent = np.frexp(x) man = int(np.ldexp(mantissa, prec)) exp = int(exponent - prec) r = ctx.make_mpf(mpmath.libmp.from_man_exp(man, exp, prec, rounding)) assert ctx.isfinite(r), r._mpf_ return r elif isinstance(x, np.complexfloating): re, im = self.nptomp(x.real), self.nptomp(x.imag) return re.context.make_mpc((re._mpf_, im._mpf_)) raise NotImplementedError(f'convert {type(x).__name__} instance to mpmath number type') def mptonp(self, x): """Convert mpmath instance to numpy array/scalar type. """ if isinstance(x, np.ndarray) and x.dtype.kind == 'O': x_flat = x.flatten() item = x_flat[0] ctx = item.context fp_format = self.contexts_inv[ctx] if isinstance(item, ctx.mpc): dtype = getattr(np, self.map_float_to_complex[fp_format]) elif isinstance(item, ctx.mpf): dtype = getattr(np, fp_format) else: dtype = None if dtype is not None: return np.fromiter(map(self.mptonp, x_flat), dtype=dtype).reshape(x.shape) elif isinstance(x, self.mpmath.ctx_mp.mpnumeric): ctx = x.context if isinstance(x, ctx.mpc): fp_format = self.contexts_inv[ctx] dtype = getattr(np, self.map_float_to_complex[fp_format]) r = dtype().reshape(1).view(getattr(np, fp_format)) r[0] = self.mptonp(x.real) r[1] = self.mptonp(x.imag) return r.view(dtype)[0] elif isinstance(x, ctx.mpf): fp_format = self.contexts_inv[ctx] dtype = getattr(np, fp_format) if ctx.isfinite(x): sign, man, exp, bc = self.mpmath.libmp.normalize(*x._mpf_, *ctx._prec_rounding) assert bc >= 0, (sign, man, exp, bc, x._mpf_) if exp + bc < self.float_minexp[fp_format]: return -ctx.zero if sign else ctx.zero if exp + bc > self.float_maxexp[fp_format]: return ctx.ninf if sign else ctx.inf man = dtype(-man if sign else man) r = np.ldexp(man, exp) assert np.isfinite(r), (x, r, x._mpf_, man) return r elif ctx.isnan(x): return dtype(np.nan) elif ctx.isinf(x): return dtype(-np.inf if x._mpf_[0] else np.inf) raise NotImplementedError(f'convert {type(x)} instance to numpy floating point type') def __call__(self, *args, **kwargs): mp_args = [] context = None for a in args: if isinstance(a, (np.ndarray, np.floating, np.complexfloating)): mp_args.append(self.nptomp(a)) if context is None: context = self.get_context(a) else: assert context is self.get_context(a) else: mp_args.append(a) extra_prec = int(context.prec * self.extra_prec_multiplier) + self.extra_prec with context.extraprec(extra_prec): result = super().__call__(*mp_args, **kwargs) if isinstance(result, tuple): lst = [] for r in result: if ((isinstance(r, np.ndarray) and r.dtype.kind == 'O') or isinstance(r, self.mpmath.ctx_mp.mpnumeric)): r = self.mptonp(r) lst.append(r) return tuple(lst) if ((isinstance(result, np.ndarray) and result.dtype.kind == 'O') or isinstance(result, self.mpmath.ctx_mp.mpnumeric)): return self.mptonp(result) return result class numpy_with_mpmath: """Namespace of universal functions on numpy arrays that use mpmath backend for evaluation and return numpy arrays as outputs. """ _provides = [ 'abs', 'absolute', 'sqrt', 'exp', 'expm1', 'exp2', 'log', 'log1p', 'log10', 'log2', 'sin', 'cos', 'tan', 'arcsin', 'arccos', 'arctan', 'sinh', 'cosh', 'tanh', 'arcsinh', 'arccosh', 'arctanh', 'square', 'positive', 'negative', 'conjugate', 'sign', 'sinc', 'normalize', ] _mp_names = dict( abs='absmin', absolute='absmin', log='ln', arcsin='asin', arccos='acos', arctan='atan', arcsinh='asinh', arccosh='acosh', arctanh='atanh', ) def __init__(self, mpmath, extra_prec_multiplier=0, extra_prec=0): self.mpmath = mpmath for name in self._provides: mp_name = self._mp_names.get(name, name) if hasattr(self, name): op = getattr(self, name) else: def op(x, mp_name=mp_name): return getattr(x.context, mp_name)(x) setattr(self, name, vectorize_with_mpmath(op, mpmath=mpmath, extra_prec_multiplier=extra_prec_multiplier, extra_prec=extra_prec)) # The following function methods operate on mpmath number instances. # The corresponding function names must be listed in # numpy_with_mpmath._provides list. def square(self, x): return x * x def positive(self, x): return x def negative(self, x): return -x def sqrt(self, x): ctx = x.context if isinstance(x, ctx.mpc): # Workaround mpmath 1.3 bug in sqrt(+-inf+-infj) evaluation (see mpmath/mpmath#776). # TODO(pearu): remove this function when mpmath 1.4 or newer # will be the required test dependency. if ctx.isinf(x.imag): return ctx.make_mpc((ctx.inf._mpf_, x.imag._mpf_)) return ctx.sqrt(x) def expm1(self, x): return x.context.expm1(x) def log1p(self, x): ctx = x.context if isinstance(x, ctx.mpc): # Workaround mpmath 1.3 bug in log(+-inf+-infj) evaluation (see mpmath/mpmath#774). # TODO(pearu): remove this function when mpmath 1.4 or newer # will be the required test dependency. if ctx.isinf(x.real) and ctx.isinf(x.imag): pi = ctx.pi if x.real > 0 and x.imag > 0: return ctx.make_mpc((x.real._mpf_, (pi / 4)._mpf_)) if x.real > 0 and x.imag < 0: return ctx.make_mpc((x.real._mpf_, (-pi / 4)._mpf_)) if x.real < 0 and x.imag < 0: return ctx.make_mpc(((-x.real)._mpf_, (-3 * pi / 4)._mpf_)) if x.real < 0 and x.imag > 0: return ctx.make_mpc(((-x.real)._mpf_, (3 * pi / 4)._mpf_)) return ctx.log1p(x) def tan(self, x): ctx = x.context if isinstance(x, ctx.mpc): # Workaround mpmath 1.3 bug in tan(+-inf+-infj) evaluation (see mpmath/mpmath#781). # TODO(pearu): remove this function when mpmath 1.4 or newer # will be the required test dependency. if ctx.isinf(x.imag) and (ctx.isinf(x.real) or ctx.isfinite(x.real)): if x.imag > 0: return ctx.make_mpc((ctx.zero._mpf_, ctx.one._mpf_)) return ctx.make_mpc((ctx.zero._mpf_, (-ctx.one)._mpf_)) if ctx.isinf(x.real) and ctx.isfinite(x.imag): return ctx.make_mpc((ctx.nan._mpf_, ctx.nan._mpf_)) return ctx.tan(x) def tanh(self, x): ctx = x.context if isinstance(x, ctx.mpc): # Workaround mpmath 1.3 bug in tanh(+-inf+-infj) evaluation (see mpmath/mpmath#781). # TODO(pearu): remove this function when mpmath 1.4 or newer # will be the required test dependency. if ctx.isinf(x.imag) and (ctx.isinf(x.real) or ctx.isfinite(x.real)): if x.imag > 0: return ctx.make_mpc((ctx.zero._mpf_, ctx.one._mpf_)) return ctx.make_mpc((ctx.zero._mpf_, (-ctx.one)._mpf_)) if ctx.isinf(x.real) and ctx.isfinite(x.imag): return ctx.make_mpc((ctx.nan._mpf_, ctx.nan._mpf_)) return ctx.tanh(x) def log2(self, x): return x.context.ln(x) / x.context.ln2 def log10(self, x): return x.context.ln(x) / x.context.ln10 def exp2(self, x): return x.context.exp(x * x.context.ln2) def arcsin(self, x): ctx = x.context if isinstance(x, ctx.mpc): # Workaround mpmath 1.3 bug in asin(+-inf+-infj) evaluation (see # mpmath/mpmath#793). # TODO(pearu): remove the if-block below when mpmath 1.4 or # newer will be the required test dependency. pi = ctx.pi inf = ctx.inf zero = ctx.zero if ctx.isinf(x.real): sign_real = -1 if x.real < 0 else 1 real = sign_real * pi / (4 if ctx.isinf(x.imag) else 2) imag = -inf if x.imag < 0 else inf return ctx.make_mpc((real._mpf_, imag._mpf_)) elif ctx.isinf(x.imag): return ctx.make_mpc((zero._mpf_, x.imag._mpf_)) # On branch cut, mpmath.mp.asin returns different value compared # to mpmath.fp.asin and numpy.arcsin (see # mpmath/mpmath#786). The following if-block ensures # compatibiliy with numpy.arcsin. if x.real > 1 and x.imag == 0: return ctx.asin(x).conjugate() return ctx.asin(x) def arcsinh(self, x): ctx = x.context if isinstance(x, ctx.mpc): # Workaround mpmath 1.3 bug in asinh(+-inf+-infj) evaluation # (see mpmath/mpmath#749). # TODO(pearu): remove the if-block below when mpmath 1.4 or # newer will be the required test dependency. pi = ctx.pi inf = ctx.inf zero = ctx.zero if ctx.isinf(x.imag): sign_imag = -1 if x.imag < 0 else 1 real = -inf if x.real < 0 else inf imag = sign_imag * pi / (4 if ctx.isinf(x.real) else 2) return ctx.make_mpc((real._mpf_, imag._mpf_)) elif ctx.isinf(x.real): return ctx.make_mpc((x.real._mpf_, zero._mpf_)) # On branch cut, mpmath.mp.asinh returns different value # compared to mpmath.fp.asinh and numpy.arcsinh (see # mpmath/mpmath#786). The following if-block ensures # compatibiliy with numpy.arcsinh. if x.real == 0 and x.imag < -1: return (-ctx.asinh(x)).conjugate() return ctx.asinh(x) def normalize(self, exact, reference, value): """Normalize reference and value using precision defined by the difference of exact and reference. """ def worker(ctx, s, e, r, v): ss, sm, se, sbc = s._mpf_ es, em, ee, ebc = e._mpf_ rs, rm, re, rbc = r._mpf_ vs, vm, ve, vbc = v._mpf_ if not (ctx.isfinite(e) and ctx.isfinite(r) and ctx.isfinite(v)): return r, v me = min(se, ee, re, ve) # transform mantissa parts to the same exponent base sm_e = sm << (se - me) em_e = em << (ee - me) rm_e = rm << (re - me) vm_e = vm << (ve - me) # find matching higher and non-matching lower bits of e and r sm_b = bin(sm_e)[2:] if sm_e else '' em_b = bin(em_e)[2:] if em_e else '' rm_b = bin(rm_e)[2:] if rm_e else '' vm_b = bin(vm_e)[2:] if vm_e else '' m = max(len(sm_b), len(em_b), len(rm_b), len(vm_b)) em_b = '0' * (m - len(em_b)) + em_b rm_b = '0' * (m - len(rm_b)) + rm_b c1 = 0 for b0, b1 in zip(em_b, rm_b): if b0 != b1: break c1 += 1 c0 = m - c1 # truncate r and v mantissa rm_m = rm_e >> c0 vm_m = vm_e >> c0 # normalized r and v nr = ctx.make_mpf((rs, rm_m, -c1, len(bin(rm_m)) - 2)) if rm_m else (-ctx.zero if rs else ctx.zero) nv = ctx.make_mpf((vs, vm_m, -c1, len(bin(vm_m)) - 2)) if vm_m else (-ctx.zero if vs else ctx.zero) return nr, nv ctx = exact.context scale = abs(exact) if isinstance(exact, ctx.mpc): rr, rv = worker(ctx, scale, exact.real, reference.real, value.real) ir, iv = worker(ctx, scale, exact.imag, reference.imag, value.imag) return ctx.make_mpc((rr._mpf_, ir._mpf_)), ctx.make_mpc((rv._mpf_, iv._mpf_)) elif isinstance(exact, ctx.mpf): return worker(ctx, scale, exact, reference, value) else: assert 0 # unreachable