# Copyright 2024 The JAX Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ruff: noqa """Python bindings for the MLIR Triton dialect.""" from __future__ import annotations from collections.abc import Sequence from jaxlib.mlir._mlir_libs._triton_ext import ( PointerType as PointerType, register_dialect as register_dialect, infer_reduce_op_encoding as _infer_reduce_op_encoding, ) from jaxlib.mlir import ir from ._triton_enum_gen import * # pylint: disable=wildcard-import from ._triton_ops_gen import * # pylint: disable=wildcard-import class ReduceOp(ReduceOp): # type: ignore def __init__( self, operands: Sequence[ir.Value], axis: int, *, loc: ir.Location | None = None, ip: ir.InsertionPoint | None = None, ): return_types = _infer_reduce_op_return_types(operands, axis) super().__init__(return_types, operands, axis, loc=loc, ip=ip) # TODO(slebedev): Consider overriding instead. del reduce class ScanOp(ScanOp): # type: ignore def __init__( self, operands: Sequence[ir.Value], axis: int, reverse: bool = False, *, loc: ir.Location | None = None, ip: ir.InsertionPoint | None = None, ): return_types = [op.type for op in operands] super().__init__(return_types, operands, axis, reverse, loc=loc, ip=ip) # TODO(slebedev): Consider overriding instead. del scan # The following reimplements return type inference for some Triton operations. # We cannot avoid doing that atm, because MLIR Python bindings do not support # neither # * transparent return type inference for operations with regions; nor # * manual return type inference for dialects with usePropertiesForAttributes. def _infer_reduce_op_return_types( operands: Sequence[ir.Value], axis: int ) -> Sequence[ir.Type]: return_types = [] for op in operands: op_type = ir.RankedTensorType(op.type) shape = list(op_type.shape) del shape[axis] if not shape: return_types.append(op_type.element_type) elif op_encoding := op_type.encoding: encoding = _infer_reduce_op_encoding(op_encoding, axis) if encoding is not None: raise RuntimeError("Failed to infer return type encoding for ReduceOp") return_types.append( ir.RankedTensorType.get(shape, op_type.element_type, encoding) ) else: return_types.append(ir.RankedTensorType.get(shape, op_type.element_type)) return return_types