# Copyright 2021 The JAX Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License import scipy.stats as osp_stats from jax import lax from jax._src.lax.lax import _const as _lax_const from jax._src.numpy.util import _wraps from jax._src.numpy.lax_numpy import _promote_args_inexact, where, inf from jax._src.typing import Array, ArrayLike @_wraps(osp_stats.chi2.logpdf, update_doc=False) def logpdf(x: ArrayLike, df: ArrayLike, loc: ArrayLike = 0, scale: ArrayLike = 1) -> Array: x, df, loc, scale = _promote_args_inexact("chi2.logpdf", x, df, loc, scale) one = _lax_const(x, 1) two = _lax_const(x, 2) y = lax.div(lax.sub(x, loc), scale) df_on_two = lax.div(df, two) kernel = lax.sub(lax.mul(lax.sub(df_on_two, one), lax.log(y)), lax.div(y,two)) nrml_cnst = lax.neg(lax.add(lax.lgamma(df_on_two),lax.div(lax.mul(lax.log(two), df),two))) log_probs = lax.add(lax.sub(nrml_cnst, lax.log(scale)), kernel) return where(lax.lt(x, loc), -inf, log_probs) @_wraps(osp_stats.chi2.pdf, update_doc=False) def pdf(x: ArrayLike, df: ArrayLike, loc: ArrayLike = 0, scale: ArrayLike = 1) -> Array: return lax.exp(logpdf(x, df, loc, scale))