# Copyright 2018 The JAX Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A basic variational autoencoder (VAE) on binarized MNIST using Numpy and JAX. This file uses the stax network definition library and the optimizers optimization library. """ import os import time import matplotlib.pyplot as plt import jax import jax.numpy as jnp from jax import jit, grad, lax, random from jax.example_libraries import optimizers from jax.example_libraries import stax from jax.example_libraries.stax import Dense, FanOut, Relu, Softplus from examples import datasets def gaussian_kl(mu, sigmasq): """KL divergence from a diagonal Gaussian to the standard Gaussian.""" return -0.5 * jnp.sum(1. + jnp.log(sigmasq) - mu**2. - sigmasq) def gaussian_sample(rng, mu, sigmasq): """Sample a diagonal Gaussian.""" return mu + jnp.sqrt(sigmasq) * random.normal(rng, mu.shape) def bernoulli_logpdf(logits, x): """Bernoulli log pdf of data x given logits.""" return -jnp.sum(jnp.logaddexp(0., jnp.where(x, -1., 1.) * logits)) def elbo(rng, params, images): """Monte Carlo estimate of the negative evidence lower bound.""" enc_params, dec_params = params mu_z, sigmasq_z = encode(enc_params, images) logits_x = decode(dec_params, gaussian_sample(rng, mu_z, sigmasq_z)) return bernoulli_logpdf(logits_x, images) - gaussian_kl(mu_z, sigmasq_z) def image_sample(rng, params, nrow, ncol): """Sample images from the generative model.""" _, dec_params = params code_rng, img_rng = random.split(rng) logits = decode(dec_params, random.normal(code_rng, (nrow * ncol, 10))) sampled_images = random.bernoulli(img_rng, jnp.logaddexp(0., logits)) return image_grid(nrow, ncol, sampled_images, (28, 28)) def image_grid(nrow, ncol, imagevecs, imshape): """Reshape a stack of image vectors into an image grid for plotting.""" images = iter(imagevecs.reshape((-1,) + imshape)) return jnp.vstack([jnp.hstack([next(images).T for _ in range(ncol)][::-1]) for _ in range(nrow)]).T encoder_init, encode = stax.serial( Dense(512), Relu, Dense(512), Relu, FanOut(2), stax.parallel(Dense(10), stax.serial(Dense(10), Softplus)), ) decoder_init, decode = stax.serial( Dense(512), Relu, Dense(512), Relu, Dense(28 * 28), ) if __name__ == "__main__": step_size = 0.001 num_epochs = 100 batch_size = 32 nrow, ncol = 10, 10 # sampled image grid size test_rng = random.key(1) # fixed prng key for evaluation imfile = os.path.join(os.getenv("TMPDIR", "/tmp/"), "mnist_vae_{:03d}.png") train_images, _, test_images, _ = datasets.mnist(permute_train=True) num_complete_batches, leftover = divmod(train_images.shape[0], batch_size) num_batches = num_complete_batches + bool(leftover) enc_init_rng, dec_init_rng = random.split(random.key(2)) _, init_encoder_params = encoder_init(enc_init_rng, (batch_size, 28 * 28)) _, init_decoder_params = decoder_init(dec_init_rng, (batch_size, 10)) init_params = init_encoder_params, init_decoder_params opt_init, opt_update, get_params = optimizers.momentum(step_size, mass=0.9) train_images = jax.device_put(train_images) test_images = jax.device_put(test_images) def binarize_batch(rng, i, images): i = i % num_batches batch = lax.dynamic_slice_in_dim(images, i * batch_size, batch_size) return random.bernoulli(rng, batch) @jit def run_epoch(rng, opt_state, images): def body_fun(i, opt_state): elbo_rng, data_rng = random.split(random.fold_in(rng, i)) batch = binarize_batch(data_rng, i, images) loss = lambda params: -elbo(elbo_rng, params, batch) / batch_size g = grad(loss)(get_params(opt_state)) return opt_update(i, g, opt_state) return lax.fori_loop(0, num_batches, body_fun, opt_state) @jit def evaluate(opt_state, images): params = get_params(opt_state) elbo_rng, data_rng, image_rng = random.split(test_rng, 3) binarized_test = random.bernoulli(data_rng, images) test_elbo = elbo(elbo_rng, params, binarized_test) / images.shape[0] sampled_images = image_sample(image_rng, params, nrow, ncol) return test_elbo, sampled_images opt_state = opt_init(init_params) for epoch in range(num_epochs): tic = time.time() opt_state = run_epoch(random.key(epoch), opt_state, train_images) test_elbo, sampled_images = evaluate(opt_state, test_images) print(f"{epoch: 3d} {test_elbo} ({time.time() - tic:.3f} sec)") plt.imsave(imfile.format(epoch), sampled_images, cmap=plt.cm.gray)