# Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import itertools import numpy as np from absl.testing import absltest from absl.testing import parameterized from jax import lax from jax import numpy as jnp from jax import test_util as jtu from jax.config import config from jax.config import flags config.parse_flags_with_absl() FLAGS = flags.FLAGS float_dtypes = jtu.dtypes.floating inexact_dtypes = jtu.dtypes.inexact real_dtypes = float_dtypes + jtu.dtypes.integer + jtu.dtypes.boolean all_dtypes = real_dtypes + jtu.dtypes.complex def _get_fftn_test_axes(shape): axes = [[]] ndims = len(shape) # XLA's FFT op only supports up to 3 innermost dimensions. if ndims <= 3: axes.append(None) for naxes in range(1, min(ndims, 3) + 1): axes.extend(itertools.combinations(range(ndims), naxes)) for index in range(1, ndims + 1): axes.append((-index,)) return axes def _get_fftn_func(module, inverse, real): if inverse: return _irfft_with_zeroed_inputs(module.irfftn) if real else module.ifftn else: return module.rfftn if real else module.fftn def _irfft_with_zeroed_inputs(irfft_fun): # irfft isn't defined on the full domain of inputs, so in order to have a # well defined derivative on the whole domain of the function, we zero-out # the imaginary part of the first and possibly the last elements. def wrapper(z, axes): return irfft_fun(_zero_for_irfft(z, axes), axes=axes) return wrapper def _zero_for_irfft(z, axes): if axes is not None and not axes: return z axis = z.ndim - 1 if axes is None else axes[-1] try: size = z.shape[axis] except IndexError: return z # only if axis is invalid, as occurs in some tests if size % 2: parts = [lax.slice_in_dim(z.real, 0, 1, axis=axis).real, lax.slice_in_dim(z.real, 1, size - 1, axis=axis), lax.slice_in_dim(z.real, size - 1, size, axis=axis).real] else: parts = [lax.slice_in_dim(z.real, 0, 1, axis=axis).real, lax.slice_in_dim(z.real, 1, size, axis=axis)] return jnp.concatenate(parts, axis=axis) class FftTest(jtu.JaxTestCase): def testNotImplemented(self): for name in jnp.fft._NOT_IMPLEMENTED: func = getattr(jnp.fft, name) with self.assertRaises(NotImplementedError): func() @parameterized.named_parameters(jtu.cases_from_list( {"testcase_name": "_inverse={}_real={}_shape={}_axes={}".format( inverse, real, jtu.format_shape_dtype_string(shape, dtype), axes), "axes": axes, "shape": shape, "dtype": dtype, "rng_factory": rng_factory, "inverse": inverse, "real": real} for inverse in [False, True] for real in [False, True] for rng_factory in [jtu.rand_default] for dtype in (real_dtypes if real and not inverse else all_dtypes) for shape in [(10,), (10, 10), (9,), (2, 3, 4), (2, 3, 4, 5)] for axes in _get_fftn_test_axes(shape))) def testFftn(self, inverse, real, shape, dtype, axes, rng_factory): rng = rng_factory(self.rng()) args_maker = lambda: (rng(shape, dtype),) jnp_op = _get_fftn_func(jnp.fft, inverse, real) np_op = _get_fftn_func(np.fft, inverse, real) jnp_fn = lambda a: jnp_op(a, axes=axes) np_fn = lambda a: np_op(a, axes=axes) if axes is None or axes else a # Numpy promotes to complex128 aggressively. self._CheckAgainstNumpy(np_fn, jnp_fn, args_maker, check_dtypes=False, tol=1e-4) self._CompileAndCheck(jnp_fn, args_maker) # Test gradient for differentiable types. if (FLAGS.jax_enable_x64 and dtype in (float_dtypes if real and not inverse else inexact_dtypes)): # TODO(skye): can we be more precise? tol = 0.15 jtu.check_grads(jnp_fn, args_maker(), order=2, atol=tol, rtol=tol) @parameterized.named_parameters(jtu.cases_from_list( {"testcase_name": "_inverse={}_real={}".format(inverse, real), "inverse": inverse, "real": real} for inverse in [False, True] for real in [False, True])) def testFftnErrors(self, inverse, real): rng = jtu.rand_default(self.rng()) name = 'fftn' if real: name = 'r' + name if inverse: name = 'i' + name func = _get_fftn_func(jnp.fft, inverse, real) self.assertRaisesRegex( ValueError, "jax.numpy.fft.{} only supports 1D, 2D, and 3D FFTs. " "Got axes None with input rank 4.".format(name), lambda: func(rng([2, 3, 4, 5], dtype=np.float64), axes=None)) self.assertRaisesRegex( ValueError, "jax.numpy.fft.{} does not support repeated axes. Got axes \\[1, 1\\].".format(name), lambda: func(rng([2, 3], dtype=np.float64), axes=[1, 1])) self.assertRaises( ValueError, lambda: func(rng([2, 3], dtype=np.float64), axes=[2])) self.assertRaises( ValueError, lambda: func(rng([2, 3], dtype=np.float64), axes=[-3])) @parameterized.named_parameters(jtu.cases_from_list( {"testcase_name": "_inverse={}_real={}_hermitian={}_shape={}_axis={}".format( inverse, real, hermitian, jtu.format_shape_dtype_string(shape, dtype), axis), "axis": axis, "shape": shape, "dtype": dtype, "rng_factory": rng_factory, "inverse": inverse, "real": real, "hermitian": hermitian} for inverse in [False, True] for real in [False, True] for hermitian in [False, True] for rng_factory in [jtu.rand_default] for dtype in (real_dtypes if (real and not inverse) or (hermitian and inverse) else all_dtypes) for shape in [(10,)] for axis in [-1, 0])) def testFft(self, inverse, real, hermitian, shape, dtype, axis, rng_factory): rng = rng_factory(self.rng()) args_maker = lambda: (rng(shape, dtype),) name = 'fft' if real: name = 'r' + name elif hermitian: name = 'h' + name if inverse: name = 'i' + name jnp_op = getattr(jnp.fft, name) np_op = getattr(np.fft, name) jnp_fn = lambda a: jnp_op(a, axis=axis) np_fn = lambda a: np_op(a, axis=axis) # Numpy promotes to complex128 aggressively. self._CheckAgainstNumpy(np_fn, jnp_fn, args_maker, check_dtypes=False, tol=1e-4) self._CompileAndCheck(jnp_op, args_maker) @parameterized.named_parameters(jtu.cases_from_list( {"testcase_name": "_inverse={}_real={}_hermitian={}".format(inverse, real, hermitian), "inverse": inverse, "real": real, "hermitian": hermitian} for inverse in [False, True] for real in [False, True] for hermitian in [False, True])) def testFftErrors(self, inverse, real, hermitian): rng = jtu.rand_default(self.rng()) name = 'fft' if real: name = 'r' + name elif hermitian: name = 'h' + name if inverse: name = 'i' + name func = getattr(jnp.fft, name) self.assertRaisesRegex( ValueError, "jax.numpy.fft.{} does not support multiple axes. " "Please use jax.numpy.fft.{}n. " "Got axis = \\[1, 1\\].".format(name, name), lambda: func(rng([2, 3], dtype=np.float64), axis=[1, 1]) ) self.assertRaisesRegex( ValueError, "jax.numpy.fft.{} does not support multiple axes. " "Please use jax.numpy.fft.{}n. " "Got axis = \\(1, 1\\).".format(name, name), lambda: func(rng([2, 3], dtype=np.float64), axis=(1, 1)) ) self.assertRaises( ValueError, lambda: func(rng([2, 3], dtype=np.float64), axis=[2])) self.assertRaises( ValueError, lambda: func(rng([2, 3], dtype=np.float64), axis=[-3])) @parameterized.named_parameters(jtu.cases_from_list( {"testcase_name": "_inverse={}_real={}_shape={}_axes={}".format( inverse, real, jtu.format_shape_dtype_string(shape, dtype), axes), "axes": axes, "shape": shape, "dtype": dtype, "rng_factory": rng_factory, "inverse": inverse, "real": real} for inverse in [False, True] for real in [False, True] for rng_factory in [jtu.rand_default] for dtype in (real_dtypes if real and not inverse else all_dtypes) for shape in [(16, 8, 4, 8), (16, 8, 4, 8, 4)] for axes in [(-2, -1), (0, 1), (1, 3), (-1, 2)])) def testFft2(self, inverse, real, shape, dtype, axes, rng_factory): rng = rng_factory(self.rng()) args_maker = lambda: (rng(shape, dtype),) name = 'fft2' if real: name = 'r' + name if inverse: name = 'i' + name jnp_op = getattr(jnp.fft, name) np_op = getattr(np.fft, name) # Numpy promotes to complex128 aggressively. self._CheckAgainstNumpy(np_op, jnp_op, args_maker, check_dtypes=False, tol=1e-4) self._CompileAndCheck(jnp_op, args_maker) @parameterized.named_parameters(jtu.cases_from_list( {"testcase_name": "_inverse={}_real={}".format(inverse, real), "inverse": inverse, "real": real} for inverse in [False, True] for real in [False, True])) def testFft2Errors(self, inverse, real): rng = jtu.rand_default(self.rng()) name = 'fft2' if real: name = 'r' + name if inverse: name = 'i' + name func = getattr(jnp.fft, name) self.assertRaisesRegex( ValueError, "jax.numpy.fft.{} only supports 2 axes. " "Got axes = \\[0\\].".format(name), lambda: func(rng([2, 3], dtype=np.float64), axes=[0]) ) self.assertRaisesRegex( ValueError, "jax.numpy.fft.{} only supports 2 axes. " "Got axes = \\(0, 1, 2\\).".format(name), lambda: func(rng([2, 3, 3], dtype=np.float64), axes=(0, 1, 2)) ) self.assertRaises( ValueError, lambda: func(rng([2, 3], dtype=np.float64), axes=[2, 3])) self.assertRaises( ValueError, lambda: func(rng([2, 3], dtype=np.float64), axes=[-3, -4])) @parameterized.named_parameters(jtu.cases_from_list( {"testcase_name": "_size={}_d={}".format( jtu.format_shape_dtype_string([size], dtype), d), "dtype": dtype, "size": size, "rng_factory": rng_factory, "d": d} for rng_factory in [jtu.rand_default] for dtype in all_dtypes for size in [9, 10, 101, 102] for d in [0.1, 2.])) def testFftfreq(self, size, d, dtype, rng_factory): rng = rng_factory(self.rng()) args_maker = lambda: (rng([size], dtype),) jnp_op = jnp.fft.fftfreq np_op = np.fft.fftfreq jnp_fn = lambda a: jnp_op(size, d=d) np_fn = lambda a: np_op(size, d=d) # Numpy promotes to complex128 aggressively. self._CheckAgainstNumpy(np_fn, jnp_fn, args_maker, check_dtypes=False, tol=1e-4) self._CompileAndCheck(jnp_fn, args_maker) # Test gradient for differentiable types. if dtype in inexact_dtypes: tol = 0.15 # TODO(skye): can we be more precise? jtu.check_grads(jnp_fn, args_maker(), order=2, atol=tol, rtol=tol) @parameterized.named_parameters(jtu.cases_from_list( {"testcase_name": "_n={}".format(n), "n": n} for n in [[0,1,2]])) def testFftfreqErrors(self, n): name = 'fftfreq' func = jnp.fft.fftfreq self.assertRaisesRegex( ValueError, "The n argument of jax.numpy.fft.{} only takes an int. " "Got n = \\[0, 1, 2\\].".format(name), lambda: func(n=n) ) self.assertRaisesRegex( ValueError, "The d argument of jax.numpy.fft.{} only takes a single value. " "Got d = \\[0, 1, 2\\].".format(name), lambda: func(n=10, d=n) ) @parameterized.named_parameters(jtu.cases_from_list( {"testcase_name": "_size={}_d={}".format( jtu.format_shape_dtype_string([size], dtype), d), "dtype": dtype, "size": size, "rng_factory": rng_factory, "d": d} for rng_factory in [jtu.rand_default] for dtype in all_dtypes for size in [9, 10, 101, 102] for d in [0.1, 2.])) def testRfftfreq(self, size, d, dtype, rng_factory): rng = rng_factory(self.rng()) args_maker = lambda: (rng([size], dtype),) jnp_op = jnp.fft.rfftfreq np_op = np.fft.rfftfreq jnp_fn = lambda a: jnp_op(size, d=d) np_fn = lambda a: np_op(size, d=d) # Numpy promotes to complex128 aggressively. self._CheckAgainstNumpy(np_fn, jnp_fn, args_maker, check_dtypes=False, tol=1e-4) self._CompileAndCheck(jnp_fn, args_maker) # Test gradient for differentiable types. if dtype in inexact_dtypes: tol = 0.15 # TODO(skye): can we be more precise? jtu.check_grads(jnp_fn, args_maker(), order=2, atol=tol, rtol=tol) @parameterized.named_parameters(jtu.cases_from_list( {"testcase_name": "_n={}".format(n), "n": n} for n in [[0, 1, 2]])) def testRfftfreqErrors(self, n): name = 'rfftfreq' func = jnp.fft.rfftfreq self.assertRaisesRegex( ValueError, "The n argument of jax.numpy.fft.{} only takes an int. " "Got n = \\[0, 1, 2\\].".format(name), lambda: func(n=n) ) self.assertRaisesRegex( ValueError, "The d argument of jax.numpy.fft.{} only takes a single value. " "Got d = \\[0, 1, 2\\].".format(name), lambda: func(n=10, d=n) ) @parameterized.named_parameters(jtu.cases_from_list( {"testcase_name": "dtype={}_axes={}".format( jtu.format_shape_dtype_string(shape, dtype), axes), "dtype": dtype, "shape": shape, "rng_factory": rng_factory, "axes": axes} for rng_factory in [jtu.rand_default] for dtype in all_dtypes for shape in [[9], [10], [101], [102], [3, 5], [3, 17], [5, 7, 11]] for axes in _get_fftn_test_axes(shape))) def testFftshift(self, shape, dtype, rng_factory, axes): rng = rng_factory(self.rng()) args_maker = lambda: (rng(shape, dtype),) jnp_fn = lambda arg: jnp.fft.fftshift(arg, axes=axes) np_fn = lambda arg: np.fft.fftshift(arg, axes=axes) self._CheckAgainstNumpy(np_fn, jnp_fn, args_maker) @parameterized.named_parameters(jtu.cases_from_list( {"testcase_name": "dtype={}_axes={}".format( jtu.format_shape_dtype_string(shape, dtype), axes), "dtype": dtype, "shape": shape, "rng_factory": rng_factory, "axes": axes} for rng_factory in [jtu.rand_default] for dtype in all_dtypes for shape in [[9], [10], [101], [102], [3, 5], [3, 17], [5, 7, 11]] for axes in _get_fftn_test_axes(shape))) def testIfftshift(self, shape, dtype, rng_factory, axes): rng = rng_factory(self.rng()) args_maker = lambda: (rng(shape, dtype),) jnp_fn = lambda arg: jnp.fft.ifftshift(arg, axes=axes) np_fn = lambda arg: np.fft.ifftshift(arg, axes=axes) self._CheckAgainstNumpy(np_fn, jnp_fn, args_maker) if __name__ == "__main__": absltest.main(testLoader=jtu.JaxTestLoader())