rocm_jax/jax/_src/compiler.py
Olli Lupton 1355e7c650 AutoPGLE: force-disable graphs less
Previously, XLA's command buffers (CUDA graphs) would be disabled both
for PGLE profile collection and when re-compiling using the profile
data. With this change, they are only disabled when collecting the
profile data.
2025-03-31 18:01:56 +00:00

784 lines
30 KiB
Python

# Copyright 2018 The JAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Interface to the compiler
from __future__ import annotations
from collections.abc import Sequence
import copy
from functools import partial
import logging
import time
from typing import Any, Callable
import warnings
from jax._src import cache_key as cache_key_type
from jax._src import compilation_cache
from jax._src import config as config
from jax._src import distributed
from jax._src import lib
from jax._src import monitoring
from jax._src import path as pathlib
from jax._src import profiler
from jax._src import traceback_util
from jax._src.interpreters import mlir
from jax._src.lib import xla_client as xc
from jax._src.lib.mlir import ir
import numpy as np
_DISABLE_MOST_OPTIMIZATIONS = config.bool_flag(
'jax_disable_most_optimizations',
config.bool_env('JAX_DISABLE_MOST_OPTIMIZATIONS', False),
'Try not to do much optimization work. This can be useful if the cost of '
'optimization is greater than that of running a less-optimized program.')
_COMPILER_DETAILED_LOGGING_MIN_OPS = config.int_flag(
"jax_compiler_detailed_logging_min_ops",
config.int_env("JAX_COMPILER_DETAILED_LOGGING_MIN_OPS", 10),
help=(
'How big should a module be in MLIR operations before JAX enables '
'detailed compiler logging? The intent of this flag is to suppress '
'detailed logging for small/uninteresting computations.'
),
)
# The special XLA-AutoFDO profile version that indicates that a profile is not
# available and retrieval should not be attempted.
_NO_PROFILE_DONT_RETRIEVE = -1
traceback_util.register_exclusion(__file__)
CompileOptions = xc.CompileOptions
logger = logging.getLogger(__name__)
# Will be monkeypatched with the function that gets the XLA-AutoFDO profile
# version. The default (-1) takes care of errors.
# TODO(b/289098047): consider refactoring this interface.
def get_latest_profile_version(backend: xc.Client) -> int:
del backend
return -1
def _walk_operations(op, k):
k -= 1
if k < 0:
return k
for region in op.regions:
for block in region:
for child_op in block:
k = _walk_operations(child_op, k)
if k < 0:
return k
return k
def use_detailed_logging(module: ir.Module) -> bool:
"""Returns 'true' if detailed logging should be enabled for 'module'."""
bound = _COMPILER_DETAILED_LOGGING_MIN_OPS.value
return _walk_operations(module.operation, bound) < 0
def log_persistent_cache_hit(module_name: str, cache_key: str) -> None:
hit_log_priority = (logging.WARNING if config.log_compiles.value
else logging.DEBUG)
logger.log(hit_log_priority, "Persistent compilation cache hit for '%s' with key %r",
module_name, cache_key)
def log_persistent_cache_miss(module_name: str, cache_key: str) -> None:
miss_log_priority = (logging.WARNING
if config.explain_cache_misses.value
and compilation_cache.is_persistent_cache_enabled()
else logging.DEBUG)
# all caps to match the tracing cache "TRACING CACHE MISS"
logger.log(miss_log_priority, "PERSISTENT COMPILATION CACHE MISS for '%s' with key %r",
module_name, cache_key)
def get_compile_options(
num_replicas: int,
num_partitions: int,
device_assignment=None,
use_spmd_partitioning: bool = True,
use_shardy_partitioner: bool = False,
use_auto_spmd_partitioning: bool = False,
auto_spmd_partitioning_mesh_shape: list[int] | None = None,
auto_spmd_partitioning_mesh_ids: list[int] | None = None,
env_options_overrides: dict[str, str] | None = None,
fdo_profile: bytes | None = None,
detailed_logging: bool = True,
backend: xc.Client | None = None,
) -> xc.CompileOptions:
"""Returns the compile options to use, as derived from flag values.
Args:
num_replicas: Number of replicas for which to compile.
num_partitions: Number of partitions for which to compile.
device_assignment: Optional ndarray of jax devices indicating the assignment
of logical replicas to physical devices (default inherited from
xla_client.CompileOptions). Must be consistent with `num_replicas` and
`num_partitions`.
use_spmd_partitioning: boolean indicating whether to enable SPMD or MPMD
partitioning in XLA.
use_shardy_partitioner: boolean indicating whether to use the Shardy
partitioner in XLA. Shardy is a new open sourced propagation framework for
MLIR. Currently Shardy is experimental in JAX. See
www.github.com/openxla/shardy.
use_auto_spmd_partitioning: boolean indicating whether to automatically
generate XLA shardings for SPMD partitioner.
auto_spmd_partitioning_mesh_shape: device mesh shape used to create
auto_spmd_partitioning search space.
auto_spmd_partitioning_mesh_ids: device ids used to create
auto_spmd_partitioning search space.
env_options_overrides: dict of additional options parsed by the compiler
fdo_profile: Optional profile for feedback-directed optimization passed to
XLA.
detailed_logging: Is this an "interesting" computation about which XLA would
be wise to log compilation information?
backend: the client, if available.
"""
compile_options = xc.CompileOptions()
compile_options.num_replicas = num_replicas
compile_options.num_partitions = num_partitions
build_options = compile_options.executable_build_options
build_options.use_spmd_partitioning = use_spmd_partitioning
build_options.use_auto_spmd_partitioning = use_auto_spmd_partitioning
build_options.use_shardy_partitioner = use_shardy_partitioner
if fdo_profile is not None:
build_options.fdo_profile = fdo_profile
if use_auto_spmd_partitioning:
build_options.auto_spmd_partitioning_mesh_shape = auto_spmd_partitioning_mesh_shape or []
build_options.auto_spmd_partitioning_mesh_ids = auto_spmd_partitioning_mesh_ids or []
if device_assignment is not None:
logger.debug(
'get_compile_options: num_replicas=%s num_partitions=%s device_assignment=%s',
num_replicas, num_partitions, device_assignment)
device_assignment = np.array(device_assignment)
# Allow 1D device assignment if num_partitions is 1.
if (device_assignment.ndim == 1) and (num_partitions == 1):
device_assignment = device_assignment[:, None]
if num_replicas != device_assignment.shape[0]:
msg = 'device_assignment does not match num_replicas: {} vs {}.'
raise ValueError(msg.format(device_assignment, num_replicas))
if num_partitions != device_assignment.shape[1]:
msg = 'device_assignment does not match num_partitions: {} vs {}.'
raise ValueError(msg.format(device_assignment, num_partitions))
if device_assignment.dtype == object:
device_assignment = np.vectorize(lambda d: d.id, otypes=[int])(
device_assignment)
device_assignment = xc.DeviceAssignment.create(device_assignment)
assert device_assignment.replica_count() == num_replicas
assert device_assignment.computation_count() == num_partitions
compile_options.device_assignment = device_assignment
build_options.exec_time_optimization_effort = config.exec_time_optimization_effort.value
build_options.memory_fitting_effort = config.memory_fitting_effort.value
build_options.optimization_level = config.EffortLevel(
config.optimization_level.value
).value
build_options.memory_fitting_level = config.EffortLevel(
config.memory_fitting_level.value
).value
if env_options_overrides is not None:
# Some overrides are passed directly on build_options.
overrides_on_build_options = [
"exec_time_optimization_effort", "memory_fitting_effort"]
overrides_on_build_options.extend(
["optimization_level", "memory_fitting_level"]
)
env_options_overrides = dict(env_options_overrides)
for name in overrides_on_build_options:
if name in env_options_overrides:
setattr(build_options, name, env_options_overrides.pop(name))
compile_options.env_option_overrides = list(env_options_overrides.items())
debug_options = compile_options.executable_build_options.debug_options
if lib.cuda_path is not None:
debug_options.xla_gpu_cuda_data_dir = lib.cuda_path
if _DISABLE_MOST_OPTIMIZATIONS.value:
debug_options.xla_backend_optimization_level = 0
debug_options.xla_llvm_disable_expensive_passes = True
debug_options.xla_test_all_input_layouts = False
if not config.enable_remat_opt_pass.value:
debug_options.xla_disable_hlo_passes = "rematerialization"
# XLA-AutoFDO profile version: precedence order is:
# 1. Whatever --jax_xla_profile_version is set to.
# 2. If --jax_xla_profile_version is not set (i.e., 0), call the function
# set in get_latest_profile_version and use the return value if non-zero.
# If the function returns 0, set -1; this is an error.
# -1 indicates that no attempt should be made to retrieve the latest profile
# later on.
jax_xla_profile_version = config.jax_xla_profile_version.value
if jax_xla_profile_version > 0:
compile_options.profile_version = jax_xla_profile_version
logger.debug("get_compile_options XLA-AutoFDO profile: " +
"using JAX XLA profile version %d from flag",
jax_xla_profile_version)
else:
compile_options.profile_version = _NO_PROFILE_DONT_RETRIEVE
if backend is None:
logging.info("get_compile_options: no backend supplied; "
"disabling XLA-AutoFDO profile")
else:
fdo_profile_version = get_latest_profile_version(backend)
if fdo_profile_version != 0:
compile_options.profile_version = fdo_profile_version
logger.debug("get_compile_options XLA-AutoFDO profile: " +
"using XLA-AutoFDO profile version %d",
fdo_profile_version)
else:
logger.error("get_compile_options XLA-AutoFDO profile: " +
"XLA-AutoFDO profile version is 0; this should not happen")
debug_options.xla_detailed_logging = detailed_logging
# If persistent cache is enabled, also enable additional XLA caching features.
if compilation_cache.is_persistent_cache_enabled():
# compilation_cache_dir can't be None here, but the type checker is a bit
# strict.
path = pathlib.Path(config.compilation_cache_dir.value or "")
enabled_flags = config.persistent_cache_enable_xla_caches.value or ""
if enabled_flags == "all" or "xla_gpu_kernel_cache_file" in enabled_flags:
kernel_cache_path = path / "xla_gpu_kernel_cache_file"
debug_options.xla_gpu_kernel_cache_file = str(kernel_cache_path)
# This option is required to use the kernel cache.
debug_options.xla_gpu_enable_llvm_module_compilation_parallelism = True
logger.debug("Enabling XLA kernel cache at '%s'", kernel_cache_path)
if enabled_flags == "all" or "xla_gpu_per_fusion_autotune_cache_dir" in enabled_flags:
autotune_cache_path = path / "xla_gpu_per_fusion_autotune_cache_dir"
debug_options.xla_gpu_per_fusion_autotune_cache_dir = str(autotune_cache_path)
logger.debug("Enabling XLA autotuning cache at '%s'", autotune_cache_path)
# Set caching mode so that only process 0 can write to the cache.
if distributed.global_state.process_id == 0:
debug_options.xla_gpu_experimental_autotune_cache_mode = xc.AutotuneCacheMode.UPDATE
else:
debug_options.xla_gpu_experimental_autotune_cache_mode = xc.AutotuneCacheMode.READ
return compile_options
@profiler.annotate_function
def backend_compile(
backend: xc.Client,
module: ir.Module,
options: xc.CompileOptions,
host_callbacks: Sequence[Any],
) -> xc.LoadedExecutable:
sym_name = module.operation.attributes['sym_name']
module_name = ir.StringAttr(sym_name).value
# Convert ir.Module to a string representation, unless the backend
# explicitly flags the ability to handle a module directly (avoiding the
# overhead of back and forth conversions).
# TODO(slebedev): Change the backend.compile() to accept ir.Module.
built_c: Any
if getattr(backend, "needs_str_ir", True):
built_c = mlir.module_to_bytecode(module)
else:
built_c = module
if (options.executable_build_options.fdo_profile is not None
and len(options.executable_build_options.fdo_profile)):
logger.debug(
"Compiling module %s with FDO profile of length %d",
module_name,
len(options.executable_build_options.fdo_profile),
)
try:
# we use a separate function call to ensure that XLA compilation appears
# separately in Python profiling results
if host_callbacks:
return backend.compile(
built_c, compile_options=options, host_callbacks=host_callbacks
)
# Some backends don't have `host_callbacks` option yet
# TODO(sharadmv): remove this fallback when all backends allow `compile`
# to take in `host_callbacks`
return backend.compile(built_c, compile_options=options)
except xc.XlaRuntimeError as e:
for error_handler in _XLA_RUNTIME_ERROR_HANDLERS:
handler_result = error_handler(e)
if handler_result is not None:
raise handler_result from e
raise e
_XLA_RUNTIME_ERROR_HANDLERS = []
def register_xla_runtime_error_handler(
handler_fn: Callable[[xc.XlaRuntimeError], Exception | None],
):
"""Registers a custom exception handler for XLA runtime errors.
Registering a custom handler allows re-raising a more informative exception
after encountering an XLARuntimeError.
Args:
handler_fn: A function which returns a new exception to replace the original
XLA runtime error, or None if the original error should be propagated.
Returns:
A new exception or None.
"""
_XLA_RUNTIME_ERROR_HANDLERS.append(handler_fn)
def compile_or_get_cached(
backend: xc.Client,
computation: ir.Module,
devices: np.ndarray,
compile_options: xc.CompileOptions,
host_callbacks: Sequence[Any],
pgle_profiler: profiler.PGLEProfiler | None = None,
) -> xc.LoadedExecutable:
sym_name = computation.operation.attributes['sym_name']
module_name = ir.StringAttr(sym_name).value
if dumped_to := mlir.dump_module_to_file(computation, "compile"):
logging.info("Dumped the module to %s.", dumped_to)
is_multi_process = (
len({device.process_index for device in devices.flatten()}) > 1
)
min_device_process_id = min(
devices.flatten(), key=lambda device: device.id
).process_index
# cache_key: may be None if compilation caching is disabled
cache_key, compile_options = _resolve_compilation_strategy(
computation,
devices,
compile_options,
backend,
pgle_profiler,
is_multi_process,
module_name,
min_device_process_id,
)
if cache_key is None:
return backend_compile(backend, computation, compile_options,
host_callbacks)
monitoring.record_event('/jax/compilation_cache/compile_requests_use_cache')
cache_retrieval_start = time.monotonic()
retrieved_executable, retrieved_compile_time = _cache_read(
module_name, cache_key, compile_options, backend)
cache_retrieval_time = time.monotonic() - cache_retrieval_start
if retrieved_executable is not None:
assert retrieved_compile_time is not None
log_persistent_cache_hit(module_name, cache_key)
monitoring.record_event('/jax/compilation_cache/cache_hits')
monitoring.record_event_duration_secs(
'/jax/compilation_cache/compile_time_saved_sec',
retrieved_compile_time - cache_retrieval_time)
monitoring.record_event_duration_secs(
"/jax/compilation_cache/cache_retrieval_time_sec", cache_retrieval_time)
return retrieved_executable
elif (
config.share_binary_between_hosts.value
and is_multi_process
and distributed.global_state.client is not None
# Host callbacks are currently baked into the HLO module so we cant share
# them.
and len(host_callbacks) == 0
):
log_persistent_cache_miss(module_name, cache_key)
return _compile_and_share_module(
backend,
computation,
compile_options,
host_callbacks,
distributed.global_state.client,
module_name,
cache_key,
min_device_process_id
)
else:
log_persistent_cache_miss(module_name, cache_key)
return _compile_and_write_cache(
backend,
computation,
compile_options,
host_callbacks,
module_name,
cache_key,
)
# When PGLE is enabled there might be 3 types of situations:
# 1. PGLE optimized module (the one which was recompiled with FDO profile) is
# in the persistent cache. In this case the module should be returned from
# cache and PGLE should be disabled for this module. Is module is stored in
# the persistent cache under the "pgle_optimized_cache_key", which is
# calculated by replacing the FDO profile with a sentinel value that identifies
# that the module was optimized with PGLE.
# 2. PGLE profiled module is not in the persistent cache and the module is
# getting built with an FDO profile. In this case we need to share the FDO
# profile with any other processes and store the result under the
# "pgle_optimized_cache_key" so later in case 1 we will be able to find the
# module.
# 3. PGLE profiled module is not in the persistent cache and the module is
# getting compiled to be PGLEd (FDO profile is empty). In this case we need to
# simply return the non-PGLE profiled module from the persistent cache if it
# exists, and otherwise compile it.
#
# If the compilation_cache_expect_pgle option is set then in case 1 the PGLE
# optimized module will be loaded even if PGLE is not enabled in the current
# process. This is useful if we want to combine the use of PGLE with other
# profiling tools (e.g. Nsight Systems) that cannot co-exist with PGLE due to
# contention for CUPTI resources.
def _resolve_compilation_strategy(
computation: ir.Module,
devices: np.ndarray,
compile_options: xc.CompileOptions,
backend: xc.Client,
pgle_profiler: profiler.PGLEProfiler | None,
is_multi_process: bool,
module_name: str,
min_device_process_id: int,
) -> tuple[str | None, xc.CompileOptions]:
is_auto_pgle_used = (
config.enable_pgle.value and config.pgle_profiling_runs.value > 0
)
get_cache_key = partial(_get_cache_key, backend=backend,
computation=computation, devices=devices)
if is_auto_pgle_used or config.compilation_cache_expect_pgle.value:
# This can be None if cache key generation fails.
pgle_optimized_cache_key = get_cache_key(compile_options,
override_fdo_profile=b"pgle profiled")
# TODO(b/376647494): remove the workaround when the bug is fixed; the JAX
# profiler cannot collect sufficiently detailed profile data for PGLE if
# command buffers / CUDA graphs are enabled. Therefore disable command
# buffers when compiling for PGLE data collection, but not if AutoPGLE is
# not enabled, and not when re-compiling using PGLE data. This condition
# includes `compilation_cache_expect_pgle` so that slow-to-compile modules
# that are not executed often enough to trigger re-compilation will still
# be cached between an "enable_pgle" run and an "expect_pgle" run.
first_pass_compile_options = copy.deepcopy(compile_options)
first_pass_compile_options.env_option_overrides += [
("xla_gpu_enable_command_buffer", ""),
]
else:
pgle_optimized_cache_key = None
first_pass_compile_options = compile_options
# This can be None if cache key generation fails or caching is disabled
cache_key = get_cache_key(first_pass_compile_options)
if cache_key is not None and pgle_optimized_cache_key is not None:
# The compilation cache is enabled and AutoPGLE is enabled/expected
if _is_executable_in_cache(backend, pgle_optimized_cache_key):
if config.compilation_cache_expect_pgle.value:
logging.info(f"PGLE-optimized {module_name} loaded from compilation cache")
# No need to record N profiles in this case
if pgle_profiler is not None:
pgle_profiler.disable()
return pgle_optimized_cache_key, compile_options
elif (config.compilation_cache_expect_pgle.value
and _is_executable_in_cache(backend, cache_key)):
# No PGLE-optimized module found in the persistent cache, and the user
# asserted (expect_pgle) that this miss was unexpected
warnings.warn(f"PERSISTENT CACHE MISS for PGLE-optimized {module_name} "
"despite non-PGLE hit; it may not have been executed "
"enough times when the cache was populated")
if (is_auto_pgle_used
and compile_options.executable_build_options.fdo_profile is not None
and len(compile_options.executable_build_options.fdo_profile)):
# Profile data are available to trigger a PGLE-optimized recompilation;
# store under `pgle_optimized_cache_key` if the cache is enabled
if is_multi_process and distributed.global_state.client is not None:
compile_options.executable_build_options.fdo_profile = (
_share_fdo_profiles(
computation,
devices,
compile_options,
backend,
distributed.global_state.client,
min_device_process_id,
)
)
return pgle_optimized_cache_key, compile_options
else:
# Compile for PGLE collection, store under `cache_key` if the cache is
# enabled. This is also the AutoPGLE-disabled path.
return cache_key, first_pass_compile_options
def _get_cache_key(
options: xc.CompileOptions,
backend: xc.Client,
computation: ir.Module,
devices: np.ndarray,
override_fdo_profile: bytes | None = None) -> str | None:
if not compilation_cache.is_cache_used(backend):
return None
if config.remove_custom_partitioning_ptr_from_cache_key.value:
ignore_callbacks = cache_key_type.IgnoreCallbacks.CUSTOM_PARTITIONING
else:
ignore_callbacks = cache_key_type.IgnoreCallbacks.NO
if override_fdo_profile is not None:
options = copy.deepcopy(options)
options.executable_build_options.fdo_profile = override_fdo_profile
try:
return compilation_cache.get_cache_key(
computation,
devices,
options,
backend,
ignore_callbacks,
)
except xc._xla.XlaRuntimeError as ex:
logger.error("compile_or_get_cached: unable to generate cache key, "
"skipping the cache: %s", ex)
return None
# The process that has the lowest device ID should share FDO profile before
# compilation with other processes.
def _share_fdo_profiles(
computation: ir.Module,
devices: np.ndarray,
compile_options: xc.CompileOptions,
backend: xc.Client,
global_client: lib.xla_extension.DistributedRuntimeClient,
min_process_id
) -> bytes | None:
sym_name = computation.operation.attributes['sym_name']
module_name = ir.StringAttr(sym_name).value
fdo_profile = compile_options.executable_build_options.fdo_profile
if fdo_profile is None or len(fdo_profile) == 0:
return fdo_profile
compile_options.executable_build_options.fdo_profile = b""
try:
profile_key = (
compilation_cache.get_cache_key(
computation,
devices,
compile_options,
backend,
cache_key_type.IgnoreCallbacks.ALL,
)
+ "_fdo_sync"
)
except xc._xla.XlaRuntimeError as ex:
logger.error(
"compile_or_get_cached: unable to generate cache key, "
"skipping the fdo profile sharing: %s",
ex,
)
return fdo_profile
if profile_key in _share_fdo_profiles.modules_profiles:
return _share_fdo_profiles.modules_profiles[profile_key]
share_timeout = config.share_binary_between_hosts_timeout_ms.value
if distributed.global_state.process_id == min_process_id:
logger.debug(
"Module %s. Sharing FDO profile. Process %d.",
module_name,
min_process_id,
)
global_client.key_value_set_bytes(profile_key, fdo_profile)
else:
logger.debug(
"Module %s. Waiting for FDO profile which should be set by process %d.",
module_name,
min_process_id,
)
fdo_profile = global_client.blocking_key_value_get_bytes(
profile_key, share_timeout
)
_share_fdo_profiles.modules_profiles[profile_key] = fdo_profile
return fdo_profile
_share_fdo_profiles.modules_profiles = {}
# The process with the first_process_id should compile the module and write it
# to the K-V storage.
def _compile_and_share_module(
backend: xc.Client,
computation: ir.Module,
compile_options: xc.CompileOptions,
host_callbacks: Sequence[Any],
global_client: lib.xla_extension.DistributedRuntimeClient,
module_name: str,
cache_key: str,
first_process_id: int
) -> xc.LoadedExecutable:
share_timeout = config.share_binary_between_hosts_timeout_ms.value
if cache_key in _compile_and_share_module.modules_cache:
return _compile_and_share_module.modules_cache[cache_key]
if distributed.global_state.process_id == first_process_id:
logger.debug("Process %d compiling and sharing module: %s",
first_process_id, module_name)
executable = _compile_and_write_cache(
backend,
computation,
compile_options,
host_callbacks,
module_name,
cache_key,
)
serialized_executable = backend.serialize_executable(executable)
serialized_executable = compilation_cache.compress_executable(
serialized_executable
)
global_client.key_value_set_bytes(cache_key, serialized_executable)
else:
logger.debug("Waiting for module: %s from process %d", module_name,
first_process_id)
serialized_executable = global_client.blocking_key_value_get_bytes(
cache_key, share_timeout
)
serialized_executable = compilation_cache.decompress_executable(
serialized_executable
)
executable = backend.deserialize_executable(
serialized_executable, compile_options
)
_compile_and_share_module.modules_cache[cache_key] = executable
return executable
_compile_and_share_module.modules_cache = {}
def _compile_and_write_cache(
backend: xc.Client,
computation: ir.Module,
compile_options: xc.CompileOptions,
host_callbacks: Sequence[Any],
module_name: str,
cache_key: str,
) -> xc.LoadedExecutable:
start_time = time.monotonic()
executable = backend_compile(
backend, computation, compile_options, host_callbacks
)
compile_time = time.monotonic() - start_time
_cache_write(
cache_key, compile_time, module_name, backend, executable, host_callbacks
)
return executable
def _is_executable_in_cache(backend, cache_key) -> bool:
"""Checks if executable is presented in cache on a given key
"""
try:
return compilation_cache.is_executable_in_cache(backend, cache_key)
except Exception as ex:
if config.raise_persistent_cache_errors.value:
raise
warnings.warn(
f"Error reading persistent compilation cache entry for "
f"'{cache_key}': {type(ex).__name__}: {ex}")
return False
def _cache_read(
module_name: str, cache_key: str, compile_options: xc.CompileOptions,
backend: xc.Client
) -> tuple[xc.LoadedExecutable | None, int | None]:
"""Looks up the `computation` and it's compilation time in the persistent
compilation cache repository.
"""
try:
return compilation_cache.get_executable_and_time(
cache_key, compile_options, backend)
except Exception as ex:
if config.raise_persistent_cache_errors.value:
raise
warnings.warn(
f"Error reading persistent compilation cache entry for "
f"'{module_name}': {type(ex).__name__}: {ex}")
return None, None
def _cache_write(cache_key: str,
compile_time_secs: float,
module_name: str,
backend: xc.Client, executable: xc.LoadedExecutable,
host_callbacks: Sequence[Any]) -> None:
"""Writes the `serialized_computation` and its compilation time to the
persistent compilation cache repository.
"""
# Only write cache entries from the first process. Otherwise we create
# problems with contention for writes on some filesystems, e.g., GCS.
log_priority = (logging.WARNING
if config.explain_cache_misses.value
and compilation_cache.is_persistent_cache_enabled()
else logging.DEBUG)
if distributed.global_state.process_id != 0:
logger.log(log_priority,
"Not writing persistent cache entry since process_id != 0")
return
if host_callbacks:
logger.log(
log_priority,
"Not writing persistent cache entry for '%s' because it uses host "
"callbacks (e.g. from jax.debug.print or breakpoint)", module_name)
return
min_compile_time = config.persistent_cache_min_compile_time_secs.value
if compile_time_secs < min_compile_time:
logger.log(
log_priority,
"Not writing persistent cache entry for '%s' because it took < %.2f "
"seconds to compile (%.2fs)", module_name, min_compile_time,
compile_time_secs)
return
else:
logger.debug(
"'%s' took at least %.2f seconds to compile (%.2fs)",
module_name, min_compile_time, compile_time_secs)
try:
compilation_cache.put_executable_and_time(
cache_key, module_name, executable, backend, int(compile_time_secs))
except Exception as ex:
if config.raise_persistent_cache_errors.value:
raise
warnings.warn(
f"Error writing persistent compilation cache entry for "
f"'{module_name}': {type(ex).__name__}: {ex}")