mirror of
https://github.com/ROCm/jax.git
synced 2025-04-22 21:56:05 +00:00

These are mostly due to relience on submodule import side-effects, which AFAIU are unchecked by both pytype and mypy.
1191 lines
46 KiB
Python
1191 lines
46 KiB
Python
# Copyright 2020 The JAX Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# https://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import annotations
|
|
|
|
from collections.abc import Callable, Sequence
|
|
from functools import partial
|
|
import math
|
|
import operator
|
|
from typing import Any
|
|
import warnings
|
|
|
|
import numpy as np
|
|
|
|
import jax
|
|
import jax.numpy.fft
|
|
import jax.numpy as jnp
|
|
from jax import lax
|
|
from jax._src import core
|
|
from jax._src import dtypes
|
|
from jax._src.api_util import _ensure_index_tuple
|
|
from jax._src.lax.lax import PrecisionLike
|
|
from jax._src.numpy import linalg
|
|
from jax._src.numpy.util import (
|
|
check_arraylike, promote_dtypes_inexact, promote_dtypes_complex)
|
|
from jax._src.third_party.scipy import signal_helper
|
|
from jax._src.typing import Array, ArrayLike
|
|
from jax._src.util import canonicalize_axis, tuple_delete, tuple_insert
|
|
|
|
|
|
def fftconvolve(in1: ArrayLike, in2: ArrayLike, mode: str = "full",
|
|
axes: Sequence[int] | None = None) -> Array:
|
|
"""
|
|
Convolve two N-dimensional arrays using Fast Fourier Transform (FFT).
|
|
|
|
JAX implementation of :func:`scipy.signal.fftconvolve`.
|
|
|
|
Args:
|
|
in1: left-hand input to the convolution.
|
|
in2: right-hand input to the convolution. Must have ``in1.ndim == in2.ndim``.
|
|
mode: controls the size of the output. Available operations are:
|
|
|
|
* ``"full"``: (default) output the full convolution of the inputs.
|
|
* ``"same"``: return a centered portion of the ``"full"`` output which
|
|
is the same size as ``in1``.
|
|
* ``"valid"``: return the portion of the ``"full"`` output which do not
|
|
depend on padding at the array edges.
|
|
|
|
axes: optional sequence of axes along which to apply the convolution.
|
|
|
|
Returns:
|
|
Array containing the convolved result.
|
|
|
|
See Also:
|
|
- :func:`jax.numpy.convolve`: 1D convolution
|
|
- :func:`jax.scipy.signal.convolve`: direct convolution
|
|
|
|
Examples:
|
|
A few 1D convolution examples. Because FFT-based convolution is approximate,
|
|
We use :func:`jax.numpy.printoptions` below to adjust the printing precision:
|
|
|
|
>>> x = jnp.array([1, 2, 3, 2, 1])
|
|
>>> y = jnp.array([1, 1, 1])
|
|
|
|
Full convolution uses implicit zero-padding at the edges:
|
|
|
|
>>> with jax.numpy.printoptions(precision=3):
|
|
... print(jax.scipy.signal.fftconvolve(x, y, mode='full'))
|
|
[1. 3. 6. 7. 6. 3. 1.]
|
|
|
|
Specifying ``mode = 'same'`` returns a centered convolution the same size
|
|
as the first input:
|
|
|
|
>>> with jax.numpy.printoptions(precision=3):
|
|
... print(jax.scipy.signal.fftconvolve(x, y, mode='same'))
|
|
[3. 6. 7. 6. 3.]
|
|
|
|
Specifying ``mode = 'valid'`` returns only the portion where the two arrays
|
|
fully overlap:
|
|
|
|
>>> with jax.numpy.printoptions(precision=3):
|
|
... print(jax.scipy.signal.fftconvolve(x, y, mode='valid'))
|
|
[6. 7. 6.]
|
|
"""
|
|
check_arraylike('fftconvolve', in1, in2)
|
|
in1, in2 = promote_dtypes_inexact(in1, in2)
|
|
if in1.ndim != in2.ndim:
|
|
raise ValueError("in1 and in2 should have the same dimensionality")
|
|
if mode not in ["same", "full", "valid"]:
|
|
raise ValueError("mode must be one of ['same', 'full', 'valid']")
|
|
_fftconvolve = partial(_fftconvolve_unbatched, mode=mode)
|
|
if axes is None:
|
|
return _fftconvolve(in1, in2)
|
|
axes = _ensure_index_tuple(axes)
|
|
axes = tuple(canonicalize_axis(ax, in1.ndim) for ax in axes)
|
|
mapped_axes = set(range(in1.ndim)) - set(axes)
|
|
if any(in1.shape[i] != in2.shape[i] for i in mapped_axes):
|
|
raise ValueError(f"mapped axes must have same shape; got {in1.shape=} {in2.shape=} {axes=}")
|
|
for ax in sorted(mapped_axes):
|
|
_fftconvolve = jax.vmap(_fftconvolve, in_axes=ax, out_axes=ax)
|
|
return _fftconvolve(in1, in2)
|
|
|
|
def _fftconvolve_unbatched(in1: Array, in2: Array, mode: str) -> Array:
|
|
full_shape = tuple(s1 + s2 - 1 for s1, s2 in zip(in1.shape, in2.shape))
|
|
|
|
# TODO(jakevdp): potentially use next_fast_len to evaluate with a more efficient shape.
|
|
fft_shape = full_shape # tuple(next_fast_len(s) for s in full_shape)
|
|
|
|
if mode == 'valid':
|
|
no_swap = all(s1 >= s2 for s1, s2 in zip(in1.shape, in2.shape))
|
|
swap = all(s1 <= s2 for s1, s2 in zip(in1.shape, in2.shape))
|
|
if not (no_swap or swap):
|
|
raise ValueError("For 'valid' mode, One input must be at least as "
|
|
"large as the other in every dimension.")
|
|
if swap:
|
|
in1, in2 = in2, in1
|
|
|
|
if jnp.iscomplexobj(in1):
|
|
fft, ifft = jnp.fft.fftn, jnp.fft.ifftn
|
|
else:
|
|
fft, ifft = jnp.fft.rfftn, jnp.fft.irfftn
|
|
sp1 = fft(in1, fft_shape)
|
|
sp2 = fft(in2, fft_shape)
|
|
conv = ifft(sp1 * sp2, fft_shape)
|
|
|
|
if mode == "full":
|
|
out_shape = full_shape
|
|
elif mode == "same":
|
|
out_shape = in1.shape
|
|
elif mode == "valid":
|
|
out_shape = tuple(s1 - s2 + 1 for s1, s2 in zip(in1.shape, in2.shape))
|
|
else:
|
|
raise ValueError(f"Unrecognized {mode=}")
|
|
|
|
start_indices = tuple((full_size - out_size) // 2
|
|
for full_size, out_size in zip(full_shape, out_shape))
|
|
return lax.dynamic_slice(conv, start_indices, out_shape)
|
|
|
|
|
|
# Note: we do not re-use the code from jax.numpy.convolve here, because the handling
|
|
# of padding differs slightly between the two implementations (particularly for
|
|
# mode='same').
|
|
def _convolve_nd(in1: Array, in2: Array, mode: str, *, precision: PrecisionLike) -> Array:
|
|
if mode not in ["full", "same", "valid"]:
|
|
raise ValueError("mode must be one of ['full', 'same', 'valid']")
|
|
if in1.ndim != in2.ndim:
|
|
raise ValueError("in1 and in2 must have the same number of dimensions")
|
|
if in1.size == 0 or in2.size == 0:
|
|
raise ValueError(f"zero-size arrays not supported in convolutions, got shapes {in1.shape} and {in2.shape}.")
|
|
in1, in2 = promote_dtypes_inexact(in1, in2)
|
|
|
|
no_swap = all(s1 >= s2 for s1, s2 in zip(in1.shape, in2.shape))
|
|
swap = all(s1 <= s2 for s1, s2 in zip(in1.shape, in2.shape))
|
|
if not (no_swap or swap):
|
|
raise ValueError("One input must be smaller than the other in every dimension.")
|
|
|
|
shape_o = in2.shape
|
|
if swap:
|
|
in1, in2 = in2, in1
|
|
shape = in2.shape
|
|
in2 = jnp.flip(in2)
|
|
|
|
if mode == 'valid':
|
|
padding = [(0, 0) for s in shape]
|
|
elif mode == 'same':
|
|
padding = [(s - 1 - (s_o - 1) // 2, s - s_o + (s_o - 1) // 2)
|
|
for (s, s_o) in zip(shape, shape_o)]
|
|
elif mode == 'full':
|
|
padding = [(s - 1, s - 1) for s in shape]
|
|
|
|
strides = tuple(1 for s in shape)
|
|
result = lax.conv_general_dilated(in1[None, None], in2[None, None], strides,
|
|
padding, precision=precision)
|
|
return result[0, 0]
|
|
|
|
|
|
def convolve(in1: Array, in2: Array, mode: str = 'full', method: str = 'auto',
|
|
precision: PrecisionLike = None) -> Array:
|
|
"""Convolution of two N-dimensional arrays.
|
|
|
|
JAX implementation of :func:`scipy.signal.convolve`.
|
|
|
|
Args:
|
|
in1: left-hand input to the convolution.
|
|
in2: right-hand input to the convolution. Must have ``in1.ndim == in2.ndim``.
|
|
mode: controls the size of the output. Available operations are:
|
|
|
|
* ``"full"``: (default) output the full convolution of the inputs.
|
|
* ``"same"``: return a centered portion of the ``"full"`` output which
|
|
is the same size as ``in1``.
|
|
* ``"valid"``: return the portion of the ``"full"`` output which do not
|
|
depend on padding at the array edges.
|
|
|
|
method: controls the computation method. Options are
|
|
|
|
* ``"auto"``: (default) always uses the ``"direct"`` method.
|
|
* ``"direct"``: lower to :func:`jax.lax.conv_general_dilated`.
|
|
* ``"fft"``: compute the result via a fast Fourier transform.
|
|
|
|
precision: Specify the precision of the computation. Refer to
|
|
:class:`jax.lax.Precision` for a description of available values.
|
|
|
|
Returns:
|
|
Array containing the convolved result.
|
|
|
|
See Also:
|
|
- :func:`jax.numpy.convolve`: 1D convolution
|
|
- :func:`jax.scipy.signal.convolve2d`: 2D convolution
|
|
- :func:`jax.scipy.signal.correlate`: ND correlation
|
|
|
|
Examples:
|
|
A few 1D convolution examples:
|
|
|
|
>>> x = jnp.array([1, 2, 3, 2, 1])
|
|
>>> y = jnp.array([1, 1, 1])
|
|
|
|
Full convolution uses implicit zero-padding at the edges:
|
|
|
|
>>> jax.scipy.signal.convolve(x, y, mode='full')
|
|
Array([1., 3., 6., 7., 6., 3., 1.], dtype=float32)
|
|
|
|
Specifying ``mode = 'same'`` returns a centered convolution the same size
|
|
as the first input:
|
|
|
|
>>> jax.scipy.signal.convolve(x, y, mode='same')
|
|
Array([3., 6., 7., 6., 3.], dtype=float32)
|
|
|
|
Specifying ``mode = 'valid'`` returns only the portion where the two arrays
|
|
fully overlap:
|
|
|
|
>>> jax.scipy.signal.convolve(x, y, mode='valid')
|
|
Array([6., 7., 6.], dtype=float32)
|
|
"""
|
|
if method == 'fft':
|
|
return fftconvolve(in1, in2, mode=mode)
|
|
elif method in ['direct', 'auto']:
|
|
return _convolve_nd(in1, in2, mode, precision=precision)
|
|
else:
|
|
raise ValueError(f"Got {method=}; expected 'auto', 'fft', or 'direct'.")
|
|
|
|
|
|
def convolve2d(in1: Array, in2: Array, mode: str = 'full', boundary: str = 'fill',
|
|
fillvalue: float = 0, precision: PrecisionLike = None) -> Array:
|
|
"""Convolution of two 2-dimensional arrays.
|
|
|
|
JAX implementation of :func:`scipy.signal.convolve2d`.
|
|
|
|
Args:
|
|
in1: left-hand input to the convolution. Must have ``in1.ndim == 2``.
|
|
in2: right-hand input to the convolution. Must have ``in2.ndim == 2``.
|
|
mode: controls the size of the output. Available operations are:
|
|
|
|
* ``"full"``: (default) output the full convolution of the inputs.
|
|
* ``"same"``: return a centered portion of the ``"full"`` output which
|
|
is the same size as ``in1``.
|
|
* ``"valid"``: return the portion of the ``"full"`` output which do not
|
|
depend on padding at the array edges.
|
|
|
|
boundary: only ``"fill"`` is supported.
|
|
fillvalue: only ``0`` is supported.
|
|
method: controls the computation method. Options are
|
|
|
|
* ``"auto"``: (default) always uses the ``"direct"`` method.
|
|
* ``"direct"``: lower to :func:`jax.lax.conv_general_dilated`.
|
|
* ``"fft"``: compute the result via a fast Fourier transform.
|
|
|
|
precision: Specify the precision of the computation. Refer to
|
|
:class:`jax.lax.Precision` for a description of available values.
|
|
|
|
Returns:
|
|
Array containing the convolved result.
|
|
|
|
See Also:
|
|
- :func:`jax.numpy.convolve`: 1D convolution
|
|
- :func:`jax.scipy.signal.convolve`: ND convolution
|
|
- :func:`jax.scipy.signal.correlate`: ND correlation
|
|
|
|
Examples:
|
|
A few 2D convolution examples:
|
|
|
|
>>> x = jnp.array([[1, 2],
|
|
... [3, 4]])
|
|
>>> y = jnp.array([[2, 1, 1],
|
|
... [4, 3, 4],
|
|
... [1, 3, 2]])
|
|
|
|
Full 2D convolution uses implicit zero-padding at the edges:
|
|
|
|
>>> jax.scipy.signal.convolve2d(x, y, mode='full')
|
|
Array([[ 2., 5., 3., 2.],
|
|
[10., 22., 17., 12.],
|
|
[13., 30., 32., 20.],
|
|
[ 3., 13., 18., 8.]], dtype=float32)
|
|
|
|
Specifying ``mode = 'same'`` returns a centered 2D convolution of the same size
|
|
as the first input:
|
|
|
|
>>> jax.scipy.signal.convolve2d(x, y, mode='same')
|
|
Array([[22., 17.],
|
|
[30., 32.]], dtype=float32)
|
|
|
|
Specifying ``mode = 'valid'`` returns only the portion of 2D convolution
|
|
where the two arrays fully overlap:
|
|
|
|
>>> jax.scipy.signal.convolve2d(x, y, mode='valid')
|
|
Array([[22., 17.],
|
|
[30., 32.]], dtype=float32)
|
|
"""
|
|
if boundary != 'fill' or fillvalue != 0:
|
|
raise NotImplementedError("convolve2d() only supports boundary='fill', fillvalue=0")
|
|
if jnp.ndim(in1) != 2 or jnp.ndim(in2) != 2:
|
|
raise ValueError("convolve2d() only supports 2-dimensional inputs.")
|
|
return _convolve_nd(in1, in2, mode, precision=precision)
|
|
|
|
|
|
def correlate(in1: Array, in2: Array, mode: str = 'full', method: str = 'auto',
|
|
precision: PrecisionLike = None) -> Array:
|
|
"""Cross-correlation of two N-dimensional arrays.
|
|
|
|
JAX implementation of :func:`scipy.signal.correlate`.
|
|
|
|
Args:
|
|
in1: left-hand input to the cross-correlation.
|
|
in2: right-hand input to the cross-correlation. Must have ``in1.ndim == in2.ndim``.
|
|
mode: controls the size of the output. Available operations are:
|
|
|
|
* ``"full"``: (default) output the full cross-correlation of the inputs.
|
|
* ``"same"``: return a centered portion of the ``"full"`` output which
|
|
is the same size as ``in1``.
|
|
* ``"valid"``: return the portion of the ``"full"`` output which do not
|
|
depend on padding at the array edges.
|
|
|
|
method: controls the computation method. Options are
|
|
|
|
* ``"auto"``: (default) always uses the ``"direct"`` method.
|
|
* ``"direct"``: lower to :func:`jax.lax.conv_general_dilated`.
|
|
* ``"fft"``: compute the result via a fast Fourier transform.
|
|
|
|
precision: Specify the precision of the computation. Refer to
|
|
:class:`jax.lax.Precision` for a description of available values.
|
|
|
|
Returns:
|
|
Array containing the cross-correlation result.
|
|
|
|
See Also:
|
|
- :func:`jax.numpy.correlate`: 1D cross-correlation
|
|
- :func:`jax.scipy.signal.correlate2d`: 2D cross-correlation
|
|
- :func:`jax.scipy.signal.convolve`: ND convolution
|
|
|
|
Examples:
|
|
A few 1D correlation examples:
|
|
|
|
>>> x = jnp.array([1, 2, 3, 2, 1])
|
|
>>> y = jnp.array([1, 3, 2])
|
|
|
|
Full 1D correlation uses implicit zero-padding at the edges:
|
|
|
|
>>> jax.scipy.signal.correlate(x, y, mode='full')
|
|
Array([ 2., 7., 13., 15., 11., 5., 1.], dtype=float32)
|
|
|
|
Specifying ``mode = 'same'`` returns a centered 1D correlation of the same
|
|
size as the first input:
|
|
|
|
>>> jax.scipy.signal.correlate(x, y, mode='same')
|
|
Array([ 7., 13., 15., 11., 5.], dtype=float32)
|
|
|
|
Specifying ``mode = 'valid'`` returns only the portion of 1D correlation
|
|
where the two arrays fully overlap:
|
|
|
|
>>> jax.scipy.signal.correlate(x, y, mode='valid')
|
|
Array([13., 15., 11.], dtype=float32)
|
|
"""
|
|
return convolve(in1, jnp.flip(in2.conj()), mode, precision=precision, method=method)
|
|
|
|
|
|
def correlate2d(in1: Array, in2: Array, mode: str = 'full', boundary: str = 'fill',
|
|
fillvalue: float = 0, precision: PrecisionLike = None) -> Array:
|
|
"""Cross-correlation of two 2-dimensional arrays.
|
|
|
|
JAX implementation of :func:`scipy.signal.correlate2d`.
|
|
|
|
Args:
|
|
in1: left-hand input to the cross-correlation. Must have ``in1.ndim == 2``.
|
|
in2: right-hand input to the cross-correlation. Must have ``in2.ndim == 2``.
|
|
mode: controls the size of the output. Available operations are:
|
|
|
|
* ``"full"``: (default) output the full cross-correlation of the inputs.
|
|
* ``"same"``: return a centered portion of the ``"full"`` output which
|
|
is the same size as ``in1``.
|
|
* ``"valid"``: return the portion of the ``"full"`` output which do not
|
|
depend on padding at the array edges.
|
|
|
|
boundary: only ``"fill"`` is supported.
|
|
fillvalue: only ``0`` is supported.
|
|
method: controls the computation method. Options are
|
|
|
|
* ``"auto"``: (default) always uses the ``"direct"`` method.
|
|
* ``"direct"``: lower to :func:`jax.lax.conv_general_dilated`.
|
|
* ``"fft"``: compute the result via a fast Fourier transform.
|
|
|
|
precision: Specify the precision of the computation. Refer to
|
|
:class:`jax.lax.Precision` for a description of available values.
|
|
|
|
Returns:
|
|
Array containing the cross-correlation result.
|
|
|
|
See Also:
|
|
- :func:`jax.numpy.correlate`: 1D cross-correlation
|
|
- :func:`jax.scipy.signal.correlate`: ND cross-correlation
|
|
- :func:`jax.scipy.signal.convolve`: ND convolution
|
|
|
|
Examples:
|
|
A few 2D correlation examples:
|
|
|
|
>>> x = jnp.array([[2, 1, 3],
|
|
... [1, 3, 1],
|
|
... [4, 1, 2]])
|
|
>>> y = jnp.array([[1, 3],
|
|
... [4, 2]])
|
|
|
|
Full 2D correlation uses implicit zero-padding at the edges:
|
|
|
|
>>> jax.scipy.signal.correlate2d(x, y, mode='full')
|
|
Array([[ 4., 10., 10., 12.],
|
|
[ 8., 15., 24., 7.],
|
|
[11., 28., 14., 9.],
|
|
[12., 7., 7., 2.]], dtype=float32)
|
|
|
|
Specifying ``mode = 'same'`` returns a centered 2D correlation of the same
|
|
size as the first input:
|
|
|
|
>>> jax.scipy.signal.correlate2d(x, y, mode='same')
|
|
Array([[15., 24., 7.],
|
|
[28., 14., 9.],
|
|
[ 7., 7., 2.]], dtype=float32)
|
|
|
|
Specifying ``mode = 'valid'`` returns only the portion of 2D correlation
|
|
where the two arrays fully overlap:
|
|
|
|
>>> jax.scipy.signal.correlate2d(x, y, mode='valid')
|
|
Array([[15., 24.],
|
|
[28., 14.]], dtype=float32)
|
|
"""
|
|
if boundary != 'fill' or fillvalue != 0:
|
|
raise NotImplementedError("correlate2d() only supports boundary='fill', fillvalue=0")
|
|
if jnp.ndim(in1) != 2 or jnp.ndim(in2) != 2:
|
|
raise ValueError("correlate2d() only supports 2-dimensional inputs.")
|
|
|
|
swap = all(s1 <= s2 for s1, s2 in zip(in1.shape, in2.shape))
|
|
same_shape = all(s1 == s2 for s1, s2 in zip(in1.shape, in2.shape))
|
|
|
|
if mode == "same":
|
|
in1, in2 = jnp.flip(in1), in2.conj()
|
|
result = jnp.flip(_convolve_nd(in1, in2, mode, precision=precision))
|
|
elif mode == "valid":
|
|
if swap and not same_shape:
|
|
in1, in2 = jnp.flip(in2), in1.conj()
|
|
result = _convolve_nd(in1, in2, mode, precision=precision)
|
|
else:
|
|
in1, in2 = jnp.flip(in1), in2.conj()
|
|
result = jnp.flip(_convolve_nd(in1, in2, mode, precision=precision))
|
|
else:
|
|
if swap:
|
|
in1, in2 = jnp.flip(in2), in1.conj()
|
|
result = _convolve_nd(in1, in2, mode, precision=precision).conj()
|
|
else:
|
|
in1, in2 = jnp.flip(in1), in2.conj()
|
|
result = jnp.flip(_convolve_nd(in1, in2, mode, precision=precision))
|
|
return result
|
|
|
|
|
|
def detrend(data: ArrayLike, axis: int = -1, type: str = 'linear', bp: int = 0,
|
|
overwrite_data: None = None) -> Array:
|
|
"""
|
|
Remove linear or piecewise linear trends from data.
|
|
|
|
JAX implementation of :func:`scipy.signal.detrend`.
|
|
|
|
Args:
|
|
data: The input array containing the data to detrend.
|
|
axis: The axis along which to detrend. Default is -1 (the last axis).
|
|
type: The type of detrending. Can be:
|
|
|
|
* ``'linear'``: Fit a single linear trend for the entire data.
|
|
* ``'constant'``: Remove the mean value of the data.
|
|
|
|
bp: A sequence of breakpoints. If given, piecewise linear trends
|
|
are fit between these breakpoints.
|
|
overwrite_data: This argument is not supported by JAX's implementation.
|
|
|
|
Returns:
|
|
The detrended data array.
|
|
|
|
Examples:
|
|
A simple detrend operation in one dimension:
|
|
|
|
>>> data = jnp.array([1., 4., 8., 8., 9.])
|
|
|
|
Removing a linear trend from the data:
|
|
|
|
>>> detrended = jax.scipy.signal.detrend(data)
|
|
>>> with jnp.printoptions(precision=3, suppress=True): # suppress float error
|
|
... print("Detrended:", detrended)
|
|
... print("Underlying trend:", data - detrended)
|
|
Detrended: [-1. -0. 2. -0. -1.]
|
|
Underlying trend: [ 2. 4. 6. 8. 10.]
|
|
|
|
Removing a constant trend from the data:
|
|
|
|
>>> detrended = jax.scipy.signal.detrend(data, type='constant')
|
|
>>> with jnp.printoptions(precision=3): # suppress float error
|
|
... print("Detrended:", detrended)
|
|
... print("Underlying trend:", data - detrended)
|
|
Detrended: [-5. -2. 2. 2. 3.]
|
|
Underlying trend: [6. 6. 6. 6. 6.]
|
|
"""
|
|
if overwrite_data is not None:
|
|
raise NotImplementedError("overwrite_data argument not implemented.")
|
|
if type not in ['constant', 'linear']:
|
|
raise ValueError("Trend type must be 'linear' or 'constant'.")
|
|
data_arr, = promote_dtypes_inexact(jnp.asarray(data))
|
|
if type == 'constant':
|
|
return data_arr - data_arr.mean(axis, keepdims=True)
|
|
else:
|
|
N = data_arr.shape[axis]
|
|
# bp is static, so we use np operations to avoid pushing to device.
|
|
bp_arr = np.sort(np.unique(np.r_[0, bp, N]))
|
|
if bp_arr[0] < 0 or bp_arr[-1] > N:
|
|
raise ValueError("Breakpoints must be non-negative and less than length of data along given axis.")
|
|
data_arr = jnp.moveaxis(data_arr, axis, 0)
|
|
shape = data_arr.shape
|
|
data_arr = data_arr.reshape(N, -1)
|
|
for m in range(len(bp_arr) - 1):
|
|
Npts = bp_arr[m + 1] - bp_arr[m]
|
|
A = jnp.vstack([
|
|
jnp.ones(Npts, dtype=data_arr.dtype),
|
|
jnp.arange(1, Npts + 1, dtype=data_arr.dtype) / Npts.astype(data_arr.dtype)
|
|
]).T
|
|
sl = slice(bp_arr[m], bp_arr[m + 1])
|
|
coef, *_ = linalg.lstsq(A, data_arr[sl])
|
|
data_arr = data_arr.at[sl].add(-jnp.matmul(A, coef, precision=lax.Precision.HIGHEST))
|
|
return jnp.moveaxis(data_arr.reshape(shape), 0, axis)
|
|
|
|
|
|
def _fft_helper(x: Array, win: Array, detrend_func: Callable[[Array], Array],
|
|
nperseg: int, noverlap: int, nfft: int | None, sides: str) -> Array:
|
|
"""Calculate windowed FFT in the same way the original SciPy does.
|
|
"""
|
|
if x.dtype.kind == 'i':
|
|
x = x.astype(win.dtype)
|
|
|
|
*batch_shape, signal_length = x.shape
|
|
# Created strided array of data segments
|
|
if nperseg == 1 and noverlap == 0:
|
|
result = x[..., np.newaxis]
|
|
else:
|
|
step = nperseg - noverlap
|
|
batch_shape = list(batch_shape)
|
|
x = x.reshape((math.prod(batch_shape), signal_length, 1))
|
|
result = jax.lax.conv_general_dilated_patches(
|
|
x, (nperseg,), (step,),
|
|
'VALID',
|
|
dimension_numbers=('NTC', 'OIT', 'NTC'))
|
|
result = result.reshape(*batch_shape, *result.shape[-2:])
|
|
|
|
# Detrend each data segment individually
|
|
result = detrend_func(result)
|
|
|
|
# Apply window by multiplication
|
|
if jnp.iscomplexobj(win):
|
|
result, = promote_dtypes_complex(result)
|
|
result = win.reshape((1,) * len(batch_shape) + (1, nperseg)) * result
|
|
|
|
# Perform the fft on last axis. Zero-pads automatically
|
|
if sides == 'twosided':
|
|
return jax.numpy.fft.fft(result, n=nfft)
|
|
else:
|
|
return jax.numpy.fft.rfft(result.real, n=nfft)
|
|
|
|
|
|
def odd_ext(x: Array, n: int, axis: int = -1) -> Array:
|
|
"""Extends `x` along with `axis` by odd-extension.
|
|
|
|
This function was previously a part of "scipy.signal.signaltools" but is no
|
|
longer exposed.
|
|
|
|
Args:
|
|
x : input array
|
|
n : the number of points to be added to the both end
|
|
axis: the axis to be extended
|
|
"""
|
|
if n < 1:
|
|
return x
|
|
if n > x.shape[axis] - 1:
|
|
raise ValueError(
|
|
f"The extension length n ({n}) is too big. "
|
|
f"It must not exceed x.shape[axis]-1, which is {x.shape[axis] - 1}.")
|
|
left_end = lax.slice_in_dim(x, 0, 1, axis=axis)
|
|
left_ext = jnp.flip(lax.slice_in_dim(x, 1, n + 1, axis=axis), axis=axis)
|
|
right_end = lax.slice_in_dim(x, -1, None, axis=axis)
|
|
right_ext = jnp.flip(lax.slice_in_dim(x, -(n + 1), -1, axis=axis), axis=axis)
|
|
ext = jnp.concatenate((2 * left_end - left_ext,
|
|
x,
|
|
2 * right_end - right_ext),
|
|
axis=axis)
|
|
return ext
|
|
|
|
|
|
def _spectral_helper(x: Array, y: ArrayLike | None, fs: ArrayLike = 1.0,
|
|
window: str = 'hann', nperseg: int | None = None,
|
|
noverlap: int | None = None, nfft: int | None = None,
|
|
detrend_type: bool | str | Callable[[Array], Array] = 'constant',
|
|
return_onesided: bool = True, scaling: str = 'density',
|
|
axis: int = -1, mode: str = 'psd', boundary: str | None = None,
|
|
padded: bool = False) -> tuple[Array, Array, Array]:
|
|
"""LAX-backend implementation of `scipy.signal._spectral_helper`.
|
|
|
|
Unlike the original helper function, `y` can be None for explicitly
|
|
indicating auto-spectral (non cross-spectral) computation. In addition to
|
|
this, `detrend` argument is renamed to `detrend_type` for avoiding internal
|
|
name overlap.
|
|
"""
|
|
if mode not in ('psd', 'stft'):
|
|
raise ValueError(f"Unknown value for mode {mode}, "
|
|
"must be one of: ('psd', 'stft')")
|
|
|
|
def make_pad(mode, **kwargs):
|
|
def pad(x, n, axis=-1):
|
|
pad_width = [(0, 0) for unused_n in range(x.ndim)]
|
|
pad_width[axis] = (n, n)
|
|
return jnp.pad(x, pad_width, mode, **kwargs)
|
|
return pad
|
|
|
|
boundary_funcs = {
|
|
'even': make_pad('reflect'),
|
|
'odd': odd_ext,
|
|
'constant': make_pad('edge'),
|
|
'zeros': make_pad('constant', constant_values=0.0),
|
|
None: lambda x, *args, **kwargs: x
|
|
}
|
|
|
|
# Check/ normalize inputs
|
|
if boundary not in boundary_funcs:
|
|
raise ValueError(
|
|
f"Unknown boundary option '{boundary}', "
|
|
f"must be one of: {list(boundary_funcs.keys())}")
|
|
|
|
axis = core.concrete_or_error(operator.index, axis, "axis of windowed-FFT")
|
|
axis = canonicalize_axis(axis, x.ndim)
|
|
|
|
if y is None:
|
|
check_arraylike('spectral_helper', x)
|
|
x, = promote_dtypes_inexact(x)
|
|
y_arr = x # place-holder for type checking
|
|
outershape = tuple_delete(x.shape, axis)
|
|
else:
|
|
if mode != 'psd':
|
|
raise ValueError("two-argument mode is available only when mode=='psd'")
|
|
check_arraylike('spectral_helper', x, y)
|
|
x, y_arr = promote_dtypes_inexact(x, y)
|
|
if x.ndim != y_arr.ndim:
|
|
raise ValueError("two-arguments must have the same rank ({x.ndim} vs {y.ndim}).")
|
|
# Check if we can broadcast the outer axes together
|
|
try:
|
|
outershape = jnp.broadcast_shapes(tuple_delete(x.shape, axis),
|
|
tuple_delete(y_arr.shape, axis))
|
|
except ValueError as err:
|
|
raise ValueError('x and y cannot be broadcast together.') from err
|
|
|
|
result_dtype = dtypes.to_complex_dtype(x.dtype)
|
|
freq_dtype = np.finfo(result_dtype).dtype
|
|
|
|
nperseg_int: int = 0
|
|
nfft_int: int = 0
|
|
noverlap_int: int = 0
|
|
|
|
if nperseg is not None: # if specified by user
|
|
nperseg_int = core.concrete_or_error(
|
|
int, nperseg, "nperseg of windowed-FFT")
|
|
if nperseg_int < 1:
|
|
raise ValueError('nperseg must be a positive integer')
|
|
# parse window; if array like, then set nperseg = win.shape
|
|
win, nperseg_int = signal_helper._triage_segments(
|
|
window, nperseg if nperseg is None else nperseg_int,
|
|
input_length=x.shape[axis], dtype=x.dtype)
|
|
|
|
if noverlap is None:
|
|
noverlap_int = nperseg_int // 2
|
|
else:
|
|
noverlap_int = core.concrete_or_error(
|
|
int, noverlap, "noverlap of windowed-FFT")
|
|
|
|
if nfft is None:
|
|
nfft_int = nperseg_int
|
|
else:
|
|
nfft_int = core.concrete_or_error(int, nfft, "nfft of windowed-FFT")
|
|
|
|
# Special cases for size == 0
|
|
if y is None:
|
|
if x.size == 0:
|
|
return jnp.zeros(x.shape, freq_dtype), jnp.zeros(x.shape, freq_dtype), jnp.zeros(x.shape, result_dtype)
|
|
else:
|
|
if x.size == 0 or y_arr.size == 0:
|
|
shape = tuple_insert(outershape, min(x.shape[axis], y_arr.shape[axis]), axis)
|
|
return jnp.zeros(shape, freq_dtype), jnp.zeros(shape, freq_dtype), jnp.zeros(shape, result_dtype)
|
|
|
|
# Move time-axis to the end
|
|
x = jnp.moveaxis(x, axis, -1)
|
|
if y is not None and y_arr.ndim > 1:
|
|
y_arr = jnp.moveaxis(y_arr, axis, -1)
|
|
|
|
# Check if x and y are the same length, zero-pad if necessary
|
|
if y is not None and x.shape[-1] != y_arr.shape[-1]:
|
|
if x.shape[-1] < y_arr.shape[-1]:
|
|
pad_shape = list(x.shape)
|
|
pad_shape[-1] = y_arr.shape[-1] - x.shape[-1]
|
|
x = jnp.concatenate((x, jnp.zeros_like(x, shape=pad_shape)), -1)
|
|
else:
|
|
pad_shape = list(y_arr.shape)
|
|
pad_shape[-1] = x.shape[-1] - y_arr.shape[-1]
|
|
y_arr = jnp.concatenate((y_arr, jnp.zeros_like(x, shape=pad_shape)), -1)
|
|
|
|
if nfft_int < nperseg_int:
|
|
raise ValueError('nfft must be greater than or equal to nperseg.')
|
|
if noverlap_int >= nperseg_int:
|
|
raise ValueError('noverlap must be less than nperseg.')
|
|
nstep = nperseg_int - noverlap_int
|
|
|
|
# Apply paddings
|
|
if boundary is not None:
|
|
ext_func = boundary_funcs[boundary]
|
|
x = ext_func(x, nperseg_int // 2, axis=-1)
|
|
if y is not None:
|
|
y_arr = ext_func(y_arr, nperseg_int // 2, axis=-1)
|
|
|
|
if padded:
|
|
# Pad to integer number of windowed segments
|
|
# I.e make x.shape[-1] = nperseg + (nseg-1)*nstep, with integer nseg
|
|
nadd = (-(x.shape[-1]-nperseg_int) % nstep) % nperseg_int
|
|
x = jnp.concatenate((x, jnp.zeros_like(x, shape=(*x.shape[:-1], nadd))), axis=-1)
|
|
if y is not None:
|
|
y_arr = jnp.concatenate((y_arr, jnp.zeros_like(x, shape=(*y_arr.shape[:-1], nadd))), axis=-1)
|
|
|
|
# Handle detrending and window functions
|
|
detrend_func: Any
|
|
if isinstance(detrend_type, str):
|
|
detrend_func = partial(detrend, type=detrend_type, axis=-1)
|
|
elif callable(detrend_type):
|
|
if axis != -1:
|
|
# Wrap this function so that it receives a shape that it could
|
|
# reasonably expect to receive.
|
|
def detrend_func(d):
|
|
d = jnp.moveaxis(d, axis, -1)
|
|
d = detrend_type(d)
|
|
return jnp.moveaxis(d, -1, axis)
|
|
else:
|
|
detrend_func = detrend_type
|
|
elif not detrend_type:
|
|
detrend_func = lambda d: d
|
|
else:
|
|
raise ValueError(f'Unsupported detrend type: {detrend_type}')
|
|
|
|
# Determine scale
|
|
if scaling == 'density':
|
|
scale = 1.0 / (fs * (win * win).sum())
|
|
elif scaling == 'spectrum':
|
|
scale = 1.0 / win.sum()**2
|
|
else:
|
|
raise ValueError(f'Unknown scaling: {scaling}')
|
|
if mode == 'stft':
|
|
scale = jnp.sqrt(scale)
|
|
scale, = promote_dtypes_complex(scale)
|
|
|
|
# Determine onesided/ two-sided
|
|
if return_onesided:
|
|
sides = 'onesided'
|
|
if jnp.iscomplexobj(x) or jnp.iscomplexobj(y):
|
|
sides = 'twosided'
|
|
warnings.warn('Input data is complex, switching to '
|
|
'return_onesided=False')
|
|
else:
|
|
sides = 'twosided'
|
|
|
|
if sides == 'twosided':
|
|
freqs = jax.numpy.fft.fftfreq(nfft_int, 1/fs, dtype=freq_dtype)
|
|
elif sides == 'onesided':
|
|
freqs = jax.numpy.fft.rfftfreq(nfft_int, 1/fs, dtype=freq_dtype)
|
|
|
|
# Perform the windowed FFTs
|
|
result = _fft_helper(x, win, detrend_func,
|
|
nperseg_int, noverlap_int, nfft_int, sides)
|
|
|
|
if y is not None:
|
|
# All the same operations on the y data
|
|
result_y = _fft_helper(y_arr, win, detrend_func,
|
|
nperseg_int, noverlap_int, nfft_int, sides)
|
|
result = jnp.conjugate(result) * result_y
|
|
elif mode == 'psd':
|
|
result = jnp.conjugate(result) * result
|
|
|
|
result *= scale
|
|
|
|
if sides == 'onesided' and mode == 'psd':
|
|
end = None if nfft_int % 2 else -1
|
|
result = result.at[..., 1:end].mul(2)
|
|
|
|
time = jnp.arange(nperseg_int / 2, x.shape[-1] - nperseg_int / 2 + 1,
|
|
nperseg_int - noverlap_int, dtype=freq_dtype) / fs
|
|
if boundary is not None:
|
|
time -= (nperseg_int / 2) / fs
|
|
|
|
result = result.astype(result_dtype)
|
|
|
|
# All imaginary parts are zero anyways
|
|
if y is None and mode != 'stft':
|
|
result = result.real
|
|
|
|
# Move frequency axis back to axis where the data came from
|
|
result = jnp.moveaxis(result, -1, axis)
|
|
|
|
return freqs, time, result
|
|
|
|
|
|
def stft(x: Array, fs: ArrayLike = 1.0, window: str = 'hann', nperseg: int = 256,
|
|
noverlap: int | None = None, nfft: int | None = None,
|
|
detrend: bool = False, return_onesided: bool = True, boundary: str | None = 'zeros',
|
|
padded: bool = True, axis: int = -1) -> tuple[Array, Array, Array]:
|
|
"""
|
|
Compute the short-time Fourier transform (STFT).
|
|
|
|
JAX implementation of :func:`scipy.signal.stft`.
|
|
|
|
Args:
|
|
x: Array representing a time series of input values.
|
|
fs: Sampling frequency of the time series (default: 1.0).
|
|
window: Data tapering window to apply to each segment. Can be a window function name,
|
|
a tuple specifying a window length and function, or an array (default: ``'hann'``).
|
|
nperseg: Length of each segment (default: 256).
|
|
noverlap: Number of points to overlap between segments (default: ``nperseg // 2``).
|
|
nfft: Length of the FFT used, if a zero-padded FFT is desired. If ``None`` (default),
|
|
the FFT length is ``nperseg``.
|
|
detrend: Specifies how to detrend each segment. Can be ``False`` (default: no detrending),
|
|
``'constant'`` (remove mean), ``'linear'`` (remove linear trend), or a callable
|
|
accepting a segment and returning a detrended segment.
|
|
return_onesided: If True (default), return a one-sided spectrum for real inputs.
|
|
If False, return a two-sided spectrum.
|
|
boundary: Specifies whether the input signal is extended at both ends, and how.
|
|
Options are ``None`` (no extension), ``'zeros'`` (default), ``'even'``, ``'odd'``,
|
|
or ``'constant'``.
|
|
padded: Specifies whether the input signal is zero-padded at the end to make its
|
|
length a multiple of `nperseg`. If True (default), the padded signal length is
|
|
the next multiple of ``nperseg``.
|
|
axis: Axis along which the STFT is computed; the default is over the last axis (-1).
|
|
|
|
Returns:
|
|
A length-3 tuple of arrays ``(f, t, Zxx)``. ``f`` is the Array of sample frequencies.
|
|
``t`` is the Array of segment times, and ``Zxx`` is the STFT of ``x``.
|
|
|
|
See Also:
|
|
:func:`jax.scipy.signal.istft`: inverse short-time Fourier transform.
|
|
"""
|
|
return _spectral_helper(x, None, fs, window, nperseg, noverlap,
|
|
nfft, detrend, return_onesided,
|
|
scaling='spectrum', axis=axis,
|
|
mode='stft', boundary=boundary,
|
|
padded=padded)
|
|
|
|
|
|
def csd(x: Array, y: ArrayLike | None, fs: ArrayLike = 1.0, window: str = 'hann',
|
|
nperseg: int | None = None, noverlap: int | None = None,
|
|
nfft: int | None = None, detrend: str = 'constant',
|
|
return_onesided: bool = True, scaling: str = 'density',
|
|
axis: int = -1, average: str = 'mean') -> tuple[Array, Array]:
|
|
"""
|
|
Estimate cross power spectral density (CSD) using Welch's method.
|
|
|
|
This is a JAX implementation of :func:`scipy.signal.csd`. It is similar to
|
|
:func:`jax.scipy.signal.welch`, but it operates on two input signals and
|
|
estimates their cross-spectral density instead of the power spectral density
|
|
(PSD).
|
|
|
|
Args:
|
|
x: Array representing a time series of input values.
|
|
y: Array representing the second time series of input values, the same length as ``x``
|
|
along the specified ``axis``. If not specified, then assume ``y = x`` and compute
|
|
the PSD ``Pxx`` of ``x`` via Welch's method.
|
|
fs: Sampling frequency of the inputs (default: 1.0).
|
|
window: Data tapering window to apply to each segment. Can be a window function name,
|
|
a tuple specifying a window length and function, or an array (default: ``'hann'``).
|
|
nperseg: Length of each segment (default: 256).
|
|
noverlap: Number of points to overlap between segments (default: ``nperseg // 2``).
|
|
nfft: Length of the FFT used, if a zero-padded FFT is desired. If ``None`` (default),
|
|
the FFT length is ``nperseg``.
|
|
detrend: Specifies how to detrend each segment. Can be ``False`` (default: no detrending),
|
|
``'constant'`` (remove mean), ``'linear'`` (remove linear trend), or a callable
|
|
accepting a segment and returning a detrended segment.
|
|
return_onesided: If True (default), return a one-sided spectrum for real inputs.
|
|
If False, return a two-sided spectrum.
|
|
scaling: Selects between computing the power spectral density (``'density'``, default)
|
|
or the power spectrum (``'spectrum'``)
|
|
axis: Axis along which the CSD is computed (default: -1).
|
|
average: The type of averaging to use on the periodograms; one of ``'mean'`` (default)
|
|
or ``'median'``.
|
|
|
|
Returns:
|
|
A length-2 tuple of arrays ``(f, Pxy)``. ``f`` is the array of sample frequencies,
|
|
and ``Pxy`` is the cross spectral density of `x` and `y`
|
|
|
|
Notes:
|
|
The original SciPy function exhibits slightly different behavior between
|
|
``csd(x, x)`` and ``csd(x, x.copy())``. The LAX-backend version is designed
|
|
to follow the latter behavior. To replicate the former, call this function
|
|
function as ``csd(x, None)``.
|
|
|
|
See Also:
|
|
- :func:`jax.scipy.signal.welch`: Power spectral density.
|
|
- :func:`jax.scipy.signal.stft`: Short-time Fourier transform.
|
|
"""
|
|
freqs, _, Pxy = _spectral_helper(x, y, fs, window, nperseg, noverlap, nfft,
|
|
detrend, return_onesided, scaling, axis,
|
|
mode='psd')
|
|
if y is not None:
|
|
Pxy = Pxy + 0j # Ensure complex output when x is not y
|
|
|
|
# Average over windows.
|
|
if Pxy.ndim >= 2 and Pxy.size > 0:
|
|
if Pxy.shape[-1] > 1:
|
|
if average == 'median':
|
|
bias = signal_helper._median_bias(Pxy.shape[-1]).astype(Pxy.dtype)
|
|
if jnp.iscomplexobj(Pxy):
|
|
Pxy = (jnp.median(jnp.real(Pxy), axis=-1)
|
|
+ 1j * jnp.median(jnp.imag(Pxy), axis=-1))
|
|
else:
|
|
Pxy = jnp.median(Pxy, axis=-1)
|
|
Pxy /= bias
|
|
elif average == 'mean':
|
|
Pxy = Pxy.mean(axis=-1)
|
|
else:
|
|
raise ValueError(f'average must be "median" or "mean", got {average}')
|
|
else:
|
|
Pxy = jnp.reshape(Pxy, Pxy.shape[:-1])
|
|
|
|
return freqs, Pxy
|
|
|
|
|
|
def welch(x: Array, fs: ArrayLike = 1.0, window: str = 'hann',
|
|
nperseg: int | None = None, noverlap: int | None = None,
|
|
nfft: int | None = None, detrend: str = 'constant',
|
|
return_onesided: bool = True, scaling: str = 'density',
|
|
axis: int = -1, average: str = 'mean') -> tuple[Array, Array]:
|
|
"""
|
|
Estimate power spectral density (PSD) using Welch's method.
|
|
|
|
This is a JAX implementation of :func:`scipy.signal.welch`. It divides the
|
|
input signal into overlapping segments, computes the modified periodogram for
|
|
each segment, and averages the results to obtain a smoother estimate of the PSD.
|
|
|
|
Args:
|
|
x: Array representing a time series of input values.
|
|
fs: Sampling frequency of the inputs (default: 1.0).
|
|
window: Data tapering window to apply to each segment. Can be a window function name,
|
|
a tuple specifying a window length and function, or an array (default: ``'hann'``).
|
|
nperseg: Length of each segment (default: 256).
|
|
noverlap: Number of points to overlap between segments (default: ``nperseg // 2``).
|
|
nfft: Length of the FFT used, if a zero-padded FFT is desired. If ``None`` (default),
|
|
the FFT length is ``nperseg``.
|
|
detrend: Specifies how to detrend each segment. Can be ``False`` (default: no detrending),
|
|
``'constant'`` (remove mean), ``'linear'`` (remove linear trend), or a callable
|
|
accepting a segment and returning a detrended segment.
|
|
return_onesided: If True (default), return a one-sided spectrum for real inputs.
|
|
If False, return a two-sided spectrum.
|
|
scaling: Selects between computing the power spectral density (``'density'``, default)
|
|
or the power spectrum (``'spectrum'``)
|
|
axis: Axis along which the PSD is computed (default: -1).
|
|
average: The type of averaging to use on the periodograms; one of ``'mean'`` (default)
|
|
or ``'median'``.
|
|
|
|
Returns:
|
|
A length-2 tuple of arrays ``(f, Pxx)``. ``f`` is the array of sample frequencies,
|
|
and ``Pxx`` is the power spectral density of ``x``.
|
|
|
|
See Also:
|
|
- :func:`jax.scipy.signal.csd`: Cross power spectral density.
|
|
- :func:`jax.scipy.signal.stft`: Short-time Fourier transform.
|
|
"""
|
|
freqs, Pxx = csd(x, None, fs=fs, window=window, nperseg=nperseg,
|
|
noverlap=noverlap, nfft=nfft, detrend=detrend,
|
|
return_onesided=return_onesided, scaling=scaling,
|
|
axis=axis, average=average)
|
|
|
|
return freqs, Pxx.real
|
|
|
|
|
|
def _overlap_and_add(x: Array, step_size: int) -> Array:
|
|
"""Utility function compatible with tf.signal.overlap_and_add.
|
|
|
|
Args:
|
|
x: An array with `(..., frames, frame_length)`-shape.
|
|
step_size: An integer denoting overlap offsets. Must be less than
|
|
`frame_length`.
|
|
|
|
Returns:
|
|
An array with `(..., output_size)`-shape containing overlapped signal.
|
|
"""
|
|
check_arraylike("_overlap_and_add", x)
|
|
step_size = core.concrete_or_error(
|
|
int, step_size, "step_size for overlap_and_add")
|
|
if x.ndim < 2:
|
|
raise ValueError('Input must have (..., frames, frame_length) shape.')
|
|
|
|
*batch_shape, nframes, segment_len = x.shape
|
|
flat_batchsize = math.prod(batch_shape)
|
|
x = x.reshape((flat_batchsize, nframes, segment_len))
|
|
output_size = step_size * (nframes - 1) + segment_len
|
|
nstep_per_segment = 1 + (segment_len - 1) // step_size
|
|
|
|
# Here, we use shorter notation for axes.
|
|
# B: batch_size, N: nframes, S: nstep_per_segment,
|
|
# T: segment_len divided by S
|
|
|
|
padded_segment_len = nstep_per_segment * step_size
|
|
x = jnp.pad(x, ((0, 0), (0, 0), (0, padded_segment_len - segment_len)))
|
|
x = x.reshape((flat_batchsize, nframes, nstep_per_segment, step_size))
|
|
|
|
# For obtaining shifted signals, this routine reinterprets flattened array
|
|
# with a shrinked axis. With appropriate truncation/ padding, this operation
|
|
# pushes the last padded elements of the previous row to the head of the
|
|
# current row.
|
|
# See implementation of `overlap_and_add` in Tensorflow for details.
|
|
x = x.transpose((0, 2, 1, 3)) # x: (B, S, N, T)
|
|
x = jnp.pad(x, ((0, 0), (0, 0), (0, nframes), (0, 0))) # x: (B, S, N*2, T)
|
|
shrinked = x.shape[2] - 1
|
|
x = x.reshape((flat_batchsize, -1))
|
|
x = x[:, :(nstep_per_segment * shrinked * step_size)]
|
|
x = x.reshape((flat_batchsize, nstep_per_segment, shrinked * step_size))
|
|
|
|
# Finally, sum shifted segments, and truncate results to the output_size.
|
|
x = x.sum(axis=1)[:, :output_size]
|
|
return x.reshape(tuple(batch_shape) + (-1,))
|
|
|
|
|
|
def istft(Zxx: Array, fs: ArrayLike = 1.0, window: str = 'hann',
|
|
nperseg: int | None = None, noverlap: int | None = None,
|
|
nfft: int | None = None, input_onesided: bool = True,
|
|
boundary: bool = True, time_axis: int = -1,
|
|
freq_axis: int = -2) -> tuple[Array, Array]:
|
|
"""
|
|
Perform the inverse short-time Fourier transform (ISTFT).
|
|
|
|
JAX implementation of :func:`scipy.signal.istft`; computes the inverse of
|
|
:func:`jax.scipy.signal.stft`.
|
|
|
|
Args:
|
|
Zxx: STFT of the signal to be reconstructed.
|
|
fs: Sampling frequency of the time series (default: 1.0)
|
|
window: Data tapering window to apply to each segment. Can be a window function name,
|
|
a tuple specifying a window length and function, or an array (default: ``'hann'``).
|
|
nperseg: Number of data points per segment in the STFT. If ``None`` (default), the
|
|
value is determined from the size of ``Zxx``.
|
|
noverlap: Number of points to overlap between segments (default: ``nperseg // 2``).
|
|
nfft: Number of FFT points used in the STFT. If ``None`` (default), the
|
|
value is determined from the size of ``Zxx``.
|
|
input_onesided: If Tru` (default), interpret the input as a one-sided STFT
|
|
(positive frequencies only). If False, interpret the input as a two-sided STFT.
|
|
boundary: If True (default), it is assumed that the input signal was extended at
|
|
its boundaries by ``stft``. If `False`, the input signal is assumed to have been truncated at the boundaries by `stft`.
|
|
time_axis: Axis in `Zxx` corresponding to time segments (default: -1).
|
|
freq_axis: Axis in `Zxx` corresponding to frequency bins (default: -2).
|
|
|
|
Returns:
|
|
A length-2 tuple of arrays ``(t, x)``. ``t`` is the Array of signal times, and ``x``
|
|
is the reconstructed time series.
|
|
|
|
See Also:
|
|
:func:`jax.scipy.signal.stft`: short-time Fourier transform.
|
|
|
|
Examples:
|
|
Demonstrate that this gives the inverse of :func:`~jax.scipy.signal.stft`:
|
|
|
|
>>> x = jnp.array([1., 2., 3., 2., 1., 0., 1., 2.])
|
|
>>> f, t, Zxx = jax.scipy.signal.stft(x, nperseg=4)
|
|
>>> print(Zxx) # doctest: +SKIP
|
|
[[ 1. +0.j 2.5+0.j 1. +0.j 1. +0.j 0.5+0.j ]
|
|
[-0.5+0.5j -1.5+0.j -0.5-0.5j -0.5+0.5j 0. -0.5j]
|
|
[ 0. +0.j 0.5+0.j 0. +0.j 0. +0.j -0.5+0.j ]]
|
|
>>> t, x_reconstructed = jax.scipy.signal.istft(Zxx)
|
|
>>> print(x_reconstructed)
|
|
[1. 2. 3. 2. 1. 0. 1. 2.]
|
|
"""
|
|
# Input validation
|
|
check_arraylike("istft", Zxx)
|
|
if Zxx.ndim < 2:
|
|
raise ValueError('Input stft must be at least 2d!')
|
|
freq_axis = canonicalize_axis(freq_axis, Zxx.ndim)
|
|
time_axis = canonicalize_axis(time_axis, Zxx.ndim)
|
|
if freq_axis == time_axis:
|
|
raise ValueError('Must specify differing time and frequency axes!')
|
|
|
|
Zxx = jnp.asarray(Zxx, dtype=jax.dtypes.canonicalize_dtype(
|
|
np.result_type(Zxx, np.complex64)))
|
|
|
|
n_default = (2 * (Zxx.shape[freq_axis] - 1) if input_onesided
|
|
else Zxx.shape[freq_axis])
|
|
|
|
nperseg_int = core.concrete_or_error(int, nperseg or n_default,
|
|
"nperseg: segment length of STFT")
|
|
if nperseg_int < 1:
|
|
raise ValueError('nperseg must be a positive integer')
|
|
|
|
nfft_int: int = 0
|
|
if nfft is None:
|
|
nfft_int = n_default
|
|
if input_onesided and nperseg_int == n_default + 1:
|
|
nfft_int += 1 # Odd nperseg, no FFT padding
|
|
else:
|
|
nfft_int = core.concrete_or_error(int, nfft, "nfft of STFT")
|
|
if nfft_int < nperseg_int:
|
|
raise ValueError(
|
|
f'FFT length ({nfft_int}) must be longer than nperseg ({nperseg_int}).')
|
|
|
|
noverlap_int = core.concrete_or_error(
|
|
int, noverlap or nperseg_int // 2, "noverlap of STFT")
|
|
if noverlap_int >= nperseg_int:
|
|
raise ValueError('noverlap must be less than nperseg.')
|
|
nstep = nperseg_int - noverlap_int
|
|
|
|
# Rearrange axes if necessary
|
|
if time_axis != Zxx.ndim - 1 or freq_axis != Zxx.ndim - 2:
|
|
outer_idxs = tuple(
|
|
idx for idx in range(Zxx.ndim) if idx not in {time_axis, freq_axis})
|
|
Zxx = jnp.transpose(Zxx, outer_idxs + (freq_axis, time_axis))
|
|
|
|
# Perform IFFT
|
|
ifunc = jax.numpy.fft.irfft if input_onesided else jax.numpy.fft.ifft
|
|
# xsubs: [..., T, N], N is the number of frames, T is the frame length.
|
|
xsubs = ifunc(Zxx, axis=-2, n=nfft)[..., :nperseg_int, :]
|
|
|
|
# Get window as array
|
|
if window == 'hann':
|
|
# Implement the default case without scipy
|
|
win = jnp.array([1.0]) if nperseg_int == 1 else jnp.sin(jnp.linspace(0, jnp.pi, nperseg_int, endpoint=False)) ** 2
|
|
win = win.astype(xsubs.dtype)
|
|
elif isinstance(window, (str, tuple)):
|
|
# TODO(jakevdp): implement get_window() in JAX to remove optional scipy dependency
|
|
try:
|
|
from scipy.signal import get_window
|
|
except ImportError as err:
|
|
raise ImportError(f"scipy must be available to use {window=}") from err
|
|
win = get_window(window, nperseg_int)
|
|
win = jnp.array(win, dtype=xsubs.dtype)
|
|
else:
|
|
win = jnp.asarray(window)
|
|
if len(win.shape) != 1:
|
|
raise ValueError('window must be 1-D')
|
|
if win.shape[0] != nperseg_int:
|
|
raise ValueError(f'window must have length of {nperseg_int}')
|
|
xsubs *= win.sum() # This takes care of the 'spectrum' scaling
|
|
|
|
# make win broadcastable over xsubs
|
|
win = lax.expand_dims(win, (*range(xsubs.ndim - 2), -1))
|
|
x = _overlap_and_add((xsubs * win).swapaxes(-2, -1), nstep)
|
|
win_squared = jnp.repeat((win * win), xsubs.shape[-1], axis=-1)
|
|
norm = _overlap_and_add(win_squared.swapaxes(-2, -1), nstep)
|
|
|
|
# Remove extension points
|
|
if boundary:
|
|
x = x[..., nperseg_int//2:-(nperseg_int//2)]
|
|
norm = norm[..., nperseg_int//2:-(nperseg_int//2)]
|
|
x /= jnp.where(norm > 1e-10, norm, 1.0)
|
|
|
|
# Put axes back
|
|
if x.ndim > 1:
|
|
if time_axis != Zxx.ndim - 1:
|
|
if freq_axis < time_axis:
|
|
time_axis -= 1
|
|
x = jnp.moveaxis(x, -1, time_axis)
|
|
|
|
time = jnp.arange(x.shape[0], dtype=np.finfo(x.dtype).dtype) / fs
|
|
return time, x
|