mirror of
https://github.com/ROCm/jax.git
synced 2025-04-14 10:56:06 +00:00

The unbatched Jacobi solver is faster for small-moderate matrices, and the unbatched kernel doesn't have size restrictions. Timings on T4 GPU: Before: ------------------------------------------------------------ Benchmark Time CPU Iterations ------------------------------------------------------------ svd/m:1/n:1 263587 ns 242274 ns 2780 svd/m:2/n:1 335561 ns 298238 ns 2303 svd/m:5/n:1 337784 ns 299841 ns 2304 svd/m:10/n:1 339184 ns 300703 ns 2311 svd/m:100/n:1 359826 ns 320088 ns 2159 svd/m:500/n:1 376124 ns 338660 ns 2076 svd/m:800/n:1 375779 ns 335590 ns 2060 svd/m:1000/n:1 419171 ns 341487 ns 2072 svd/m:1/n:2 307564 ns 270663 ns 2544 svd/m:2/n:2 320928 ns 283601 ns 2487 svd/m:5/n:2 377373 ns 344228 ns 2035 svd/m:10/n:2 380557 ns 349412 ns 1953 svd/m:100/n:2 435465 ns 403496 ns 1722 svd/m:500/n:2 444610 ns 410913 ns 1680 svd/m:800/n:2 454493 ns 416495 ns 1665 svd/m:1000/n:2 492110 ns 420539 ns 1665 svd/m:1/n:5 307316 ns 275833 ns 2531 svd/m:2/n:5 374318 ns 341432 ns 2086 svd/m:5/n:5 512928 ns 470293 ns 1361 svd/m:10/n:5 589330 ns 537070 ns 1353 svd/m:100/n:5 620164 ns 580166 ns 1193 svd/m:500/n:5 636424 ns 593692 ns 1180 svd/m:800/n:5 635545 ns 595016 ns 1181 svd/m:1000/n:5 672443 ns 597387 ns 1115 svd/m:1/n:10 310013 ns 273998 ns 2520 svd/m:2/n:10 370451 ns 334489 ns 2105 svd/m:5/n:10 560037 ns 522223 ns 1274 svd/m:10/n:10 572868 ns 535388 ns 1304 svd/m:100/n:10 959802 ns 918258 ns 765 svd/m:500/n:10 955958 ns 909778 ns 758 svd/m:800/n:10 924104 ns 879512 ns 777 svd/m:1000/n:10 950140 ns 883493 ns 775 svd/m:1/n:100 351237 ns 315554 ns 2198 svd/m:2/n:100 426883 ns 390089 ns 1792 svd/m:5/n:100 601557 ns 564493 ns 1255 svd/m:10/n:100 920819 ns 880011 ns 787 svd/m:100/n:100 7902281 ns 7229220 ns 95 svd/m:500/n:100 9720727 ns 9040679 ns 79 svd/m:800/n:100 9856378 ns 8998050 ns 79 svd/m:1000/n:100 9721017 ns 9086414 ns 79 svd/m:1/n:500 371171 ns 334217 ns 2117 svd/m:2/n:500 449165 ns 411499 ns 1700 svd/m:5/n:500 620354 ns 581866 ns 1185 svd/m:10/n:500 892375 ns 847239 ns 833 svd/m:100/n:500 9564810 ns 8867540 ns 79 svd/m:500/n:500 111924035 ns 104078023 ns 7 svd/m:800/n:500 147777319 ns 142730412 ns 5 svd/m:1000/n:500 154205084 ns 149740209 ns 5 svd/m:1/n:800 372122 ns 334212 ns 2119 svd/m:2/n:800 456672 ns 419260 ns 1680 svd/m:5/n:800 691208 ns 626003 ns 1190 svd/m:10/n:800 1017694 ns 941480 ns 730 svd/m:100/n:800 9892683 ns 9091043 ns 76 svd/m:500/n:800 144134235 ns 139129722 ns 5 svd/m:800/n:800 342790246 ns 333299774 ns 2 svd/m:1000/n:800 432820082 ns 427978978 ns 2 svd/m:1/n:1000 372785 ns 335745 ns 1805 svd/m:2/n:1000 451946 ns 413341 ns 1668 svd/m:5/n:1000 618475 ns 577213 ns 1169 svd/m:10/n:1000 907729 ns 863335 ns 808 svd/m:100/n:1000 9868543 ns 9116870 ns 76 svd/m:500/n:1000 156777811 ns 152042065 ns 5 svd/m:800/n:1000 429704070 ns 424677592 ns 2 svd/m:1000/n:1000 654864311 ns 642693162 ns 1 After: ------------------------------------------------------------ Benchmark Time CPU Iterations ------------------------------------------------------------ svd/m:1/n:1 265980 ns 245433 ns 2791 svd/m:2/n:1 340203 ns 302783 ns 2288 svd/m:5/n:1 337807 ns 301916 ns 2286 svd/m:10/n:1 338064 ns 302441 ns 2297 svd/m:100/n:1 335444 ns 298440 ns 2327 svd/m:500/n:1 338025 ns 302096 ns 2272 svd/m:800/n:1 328382 ns 291740 ns 2252 svd/m:1000/n:1 397494 ns 310905 ns 2239 svd/m:1/n:2 310464 ns 274507 ns 2535 svd/m:2/n:2 319999 ns 284247 ns 2515 svd/m:5/n:2 373435 ns 335919 ns 2069 svd/m:10/n:2 376327 ns 339327 ns 2056 svd/m:100/n:2 385061 ns 349258 ns 2003 svd/m:500/n:2 392352 ns 355735 ns 1932 svd/m:800/n:2 410736 ns 370677 ns 1881 svd/m:1000/n:2 494326 ns 405603 ns 1721 svd/m:1/n:5 316735 ns 277292 ns 2538 svd/m:2/n:5 383748 ns 342218 ns 2077 svd/m:5/n:5 494204 ns 454309 ns 1476 svd/m:10/n:5 547017 ns 508184 ns 1371 svd/m:100/n:5 514537 ns 476761 ns 1460 svd/m:500/n:5 544656 ns 504877 ns 1381 svd/m:800/n:5 642590 ns 599314 ns 1159 svd/m:1000/n:5 706166 ns 621209 ns 1106 svd/m:1/n:10 310825 ns 274374 ns 2511 svd/m:2/n:10 381316 ns 344202 ns 2094 svd/m:5/n:10 565469 ns 526759 ns 1266 svd/m:10/n:10 576111 ns 537286 ns 1299 svd/m:100/n:10 653250 ns 613392 ns 1137 svd/m:500/n:10 690532 ns 645828 ns 1080 svd/m:800/n:10 763924 ns 723677 ns 959 svd/m:1000/n:10 940342 ns 855517 ns 818 svd/m:1/n:100 306134 ns 271533 ns 2526 svd/m:2/n:100 374680 ns 339298 ns 2071 svd/m:5/n:100 576926 ns 539062 ns 1228 svd/m:10/n:100 656806 ns 615171 ns 1123 svd/m:100/n:100 3295164 ns 3138621 ns 223 svd/m:500/n:100 4269347 ns 4166000 ns 168 svd/m:800/n:100 4656541 ns 4522247 ns 154 svd/m:1000/n:100 6479223 ns 6354578 ns 112 svd/m:1/n:500 329966 ns 289083 ns 2440 svd/m:2/n:500 407535 ns 366794 ns 1947 svd/m:5/n:500 567367 ns 522809 ns 1336 svd/m:10/n:500 712307 ns 657608 ns 1065 svd/m:100/n:500 4262986 ns 4169907 ns 167 svd/m:500/n:500 28824720 ns 28650258 ns 25 svd/m:800/n:500 29330139 ns 28677269 ns 25 svd/m:1000/n:500 30848037 ns 30089216 ns 23 svd/m:1/n:800 328620 ns 289181 ns 2329 svd/m:2/n:800 419052 ns 379483 ns 1876 svd/m:5/n:800 587366 ns 546979 ns 1269 svd/m:10/n:800 830762 ns 787923 ns 893 svd/m:100/n:800 4763633 ns 4595738 ns 152 svd/m:500/n:800 30447861 ns 29949714 ns 24 svd/m:800/n:800 94188958 ns 93488372 ns 8 svd/m:1000/n:800 94701529 ns 93394677 ns 7 svd/m:1/n:1000 351102 ns 313099 ns 2218 svd/m:2/n:1000 446543 ns 407807 ns 1708 svd/m:5/n:1000 661152 ns 616174 ns 1129 svd/m:10/n:1000 915743 ns 873397 ns 802 svd/m:100/n:1000 6434730 ns 6282779 ns 113 svd/m:500/n:1000 30244321 ns 29684290 ns 24 svd/m:800/n:1000 92727423 ns 91477078 ns 8 svd/m:1000/n:1000 169500709 ns 168358420 ns 4 PiperOrigin-RevId: 582041508
39 lines
1.2 KiB
Python
39 lines
1.2 KiB
Python
# Copyright 2020 The JAX Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# https://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
"""Benchmarks for JAX linear algebra functions."""
|
|
|
|
import google_benchmark
|
|
import jax
|
|
import jax.numpy as jnp
|
|
import numpy as np
|
|
|
|
|
|
@google_benchmark.register
|
|
@google_benchmark.option.arg_names(['m', 'n'])
|
|
@google_benchmark.option.args_product(
|
|
[[1, 2, 5, 10, 100, 500, 800, 1000], [1, 2, 5, 10, 100, 500, 800, 1000]]
|
|
)
|
|
def svd(state):
|
|
np.random.seed(1234)
|
|
m, n = state.range(0), state.range(1)
|
|
x = np.random.randn(m, n).astype(np.float32)
|
|
jax.block_until_ready(jnp.linalg.svd(x)[0])
|
|
while state:
|
|
jax.block_until_ready(jnp.linalg.svd(x)[0])
|
|
|
|
|
|
if __name__ == '__main__':
|
|
google_benchmark.main()
|