rocm_jax/cloud_tpu_colabs/JAX_demo.ipynb
2024-09-20 07:52:33 -07:00

985 lines
19 KiB
Plaintext

{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "ebUMqK9mGIDm"
},
"source": [
"## The basics: interactive NumPy on GPU and TPU\n",
"\n",
"---\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "27TqNtiQF97X"
},
"outputs": [],
"source": [
"import jax\n",
"import jax.numpy as jnp\n",
"from jax import random\n",
"\n",
"key = random.key(0)"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "cRWoxSCNGU4o"
},
"outputs": [],
"source": [
"key, subkey = random.split(key)\n",
"x = random.normal(key, (5000, 5000))\n",
"\n",
"print(x.shape)\n",
"print(x.dtype)"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "diPllsvgGfSA"
},
"outputs": [],
"source": [
"y = jnp.dot(x, x)\n",
"print(y[0, 0])"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "8-psauxnGiRk"
},
"outputs": [],
"source": [
"x"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "-2FMQ8UeoTJ8"
},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"\n",
"plt.plot(x[0])"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "DRnwCKFuGk8P"
},
"outputs": [],
"source": [
"jnp.dot(x, x.T)"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "z4VX5PkMHJIu"
},
"outputs": [],
"source": [
"print(jnp.dot(x, 2 * x)[[0, 2, 1, 0], ..., None, ::-1])"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "ORZ9Odu85BCJ"
},
"outputs": [],
"source": [
"import numpy as np\n",
"\n",
"x_cpu = np.array(x)\n",
"%timeit -n 1 -r 1 np.dot(x_cpu, x_cpu)"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "5BKh0eeAGvO5"
},
"outputs": [],
"source": [
"%timeit -n 5 -r 5 jnp.dot(x, x).block_until_ready()"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "fm4Q2zpFHUAu"
},
"source": [
"## Automatic differentiation"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "MCIQbyUYHWn1"
},
"outputs": [],
"source": [
"from jax import grad"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "kfqZpKYsHo4j"
},
"outputs": [],
"source": [
"def f(x):\n",
" if x > 0:\n",
" return 2 * x ** 3\n",
" else:\n",
" return 3 * x"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "K_26_odPHqLJ"
},
"outputs": [],
"source": [
"key = random.key(0)\n",
"x = random.normal(key, ())\n",
"\n",
"print(grad(f)(x))\n",
"print(grad(f)(-x))"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "q5V3A6loHrhS"
},
"outputs": [],
"source": [
"print(grad(grad(f))(-x))\n",
"print(grad(grad(grad(f)))(-x))"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "ba4WY4ArHv8I"
},
"outputs": [],
"source": [
"def predict(params, inputs):\n",
" for W, b in params:\n",
" outputs = jnp.dot(inputs, W) + b\n",
" inputs = jnp.tanh(outputs) # inputs to the next layer\n",
" return outputs # no activation on last layer\n",
"\n",
"def loss(params, batch):\n",
" inputs, targets = batch\n",
" predictions = predict(params, inputs)\n",
" return jnp.sum((predictions - targets)**2)\n",
"\n",
"\n",
"\n",
"def init_layer(key, n_in, n_out):\n",
" k1, k2 = random.split(key)\n",
" W = random.normal(k1, (n_in, n_out))\n",
" b = random.normal(k2, (n_out,))\n",
" return W, b\n",
"\n",
"layer_sizes = [5, 2, 3]\n",
"\n",
"key = random.key(0)\n",
"key, *keys = random.split(key, len(layer_sizes))\n",
"params = list(map(init_layer, keys, layer_sizes[:-1], layer_sizes[1:]))\n",
"\n",
"key, *keys = random.split(key, 3)\n",
"inputs = random.normal(keys[0], (8, 5))\n",
"targets = random.normal(keys[1], (8, 3))\n",
"batch = (inputs, targets)"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "LiTBibJdHz4K"
},
"outputs": [],
"source": [
"print(loss(params, batch))"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "a3KFpwH3H4Cl"
},
"outputs": [],
"source": [
"step_size = 1e-2\n",
"\n",
"for _ in range(20):\n",
" grads = grad(loss)(params, batch)\n",
" params = [(W - step_size * dW, b - step_size * db)\n",
" for (W, b), (dW, db) in zip(params, grads)]"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "YLltDr0GH7LX"
},
"outputs": [],
"source": [
"print(loss(params, batch))"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "bmxAPFC0I8b0"
},
"source": [
"Other JAX autodiff highlights:\n",
"\n",
"* Forward- and reverse-mode, totally composable\n",
"* Fast Jacobians and Hessians\n",
"* Complex number support (holomorphic and non-holomorphic)\n",
"* Jacobian pre-accumulation for elementwise operations (like `gelu`)\n",
"\n",
"\n",
"For much more, see the [JAX Autodiff Cookbook (Part 1)](https://jax.readthedocs.io/en/latest/notebooks/autodiff_cookbook.html)."
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "TRkxaVLJKNre"
},
"source": [
"## End-to-end compilation with XLA using `jit`"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "bKo4rX9-KSW7"
},
"outputs": [],
"source": [
"from jax import jit"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "94iIgZSfKWh8"
},
"outputs": [],
"source": [
"key = random.key(0)\n",
"x = random.normal(key, (5000, 5000))"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "Ybuz8Ag9KXMd"
},
"outputs": [],
"source": [
"def f(x):\n",
" y = x\n",
" for _ in range(10):\n",
" y = y - 0.1 * y + 3.\n",
" return y[:100, :100]\n",
"\n",
"f(x)"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "Y9dx5ifSKaGJ"
},
"outputs": [],
"source": [
"g = jit(f)\n",
"g(x)"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "UtsS67BvKYkC"
},
"outputs": [],
"source": [
"%timeit f(x).block_until_ready()"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "-vfcaSo9KbvR"
},
"outputs": [],
"source": [
"%timeit g(x).block_until_ready()"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "E3BQF1_AKeLn"
},
"outputs": [],
"source": [
"grad(jit(grad(jit(grad(jnp.tanh)))))(1.0)"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "AvXl1WDPKjmV"
},
"source": [
"### Constraints that come with using `jit`"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "mCtwRF18KnsE"
},
"outputs": [],
"source": [
"def f(x):\n",
" if x > 0:\n",
" return 2 * x ** 2\n",
" else:\n",
" return 3 * x\n",
"\n",
"g = jit(f)"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "_82tY-ZSKqv4"
},
"outputs": [],
"source": [
"f(2)"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "TjSAFc-iKrcB"
},
"outputs": [],
"source": [
"try:\n",
" g(2)\n",
"except Exception as e:\n",
" print(e)\n",
" pass"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "RhizP9pjKsug"
},
"outputs": [],
"source": [
"def f(x, n):\n",
" i = 0\n",
" while i < n:\n",
" x = x * x\n",
" i += 1\n",
" return x\n",
"\n",
"g = jit(f)"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "Wn6haTmUK-Q8"
},
"outputs": [],
"source": [
"f(jnp.array([1., 2., 3.]), 5)"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "HwBy1I04K-81"
},
"outputs": [],
"source": [
"try:\n",
" g(jnp.array([1., 2., 3.]), 5)\n",
"except Exception as e:\n",
" print(e)\n",
" pass"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "XmaTryZaK_3M"
},
"outputs": [],
"source": [
"g = jit(f, static_argnums=(1,))"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "HcWjxVktV4fa"
},
"outputs": [],
"source": [
"g(jnp.array([1., 2., 3.]), 5)"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "0M_-pJe7LOcO"
},
"source": [
"## Vectorization with `vmap`"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "8XIot_ndLRH1"
},
"outputs": [],
"source": [
"from jax import vmap"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "tRvCZn2wBkXP"
},
"outputs": [],
"source": [
"print(vmap(lambda x: x**2)(jnp.arange(8)))"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "icfsXizI_rkD"
},
"outputs": [],
"source": [
"from jax import make_jaxpr\n",
"\n",
"make_jaxpr(jnp.dot)(jnp.ones(8), jnp.ones(8))"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "uQm4cvAbA6M3"
},
"outputs": [],
"source": [
"make_jaxpr(vmap(jnp.dot))(jnp.ones((10, 8)), jnp.ones((10, 8)))"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "NeiFfCHEBLsU"
},
"outputs": [],
"source": [
"make_jaxpr(vmap(vmap(jnp.dot)))(jnp.ones((10, 10, 8)), jnp.ones((10, 10, 8)))"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "csX71fkSCZrp"
},
"outputs": [],
"source": [
"perex_grads = vmap(grad(loss), in_axes=(None, 0))\n",
"make_jaxpr(perex_grads)(params, batch)"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "Tmf1NT2Wqv5p"
},
"source": [
"## Parallel accelerators with pmap"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "t6RRAFn1CEln"
},
"outputs": [],
"source": [
"jax.devices()"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "tEK1I6Duqunw"
},
"outputs": [],
"source": [
"from jax import pmap"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "S-iCNfeGqzkY"
},
"outputs": [],
"source": [
"y = pmap(lambda x: x ** 2)(jnp.arange(8))\n",
"print(y)"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "xgutf5JPP3wi"
},
"outputs": [],
"source": [
"y"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "xxShG3Tdq4Gj"
},
"outputs": [],
"source": [
"z = y / 2\n",
"print(z)"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "uvDL2_bCq7kq"
},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"plt.plot(y)"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "Xg76CmLYq_Q6"
},
"outputs": [],
"source": [
"keys = random.split(random.key(0), 8)\n",
"mats = pmap(lambda key: random.normal(key, (5000, 5000)))(keys)\n",
"result = pmap(jnp.dot)(mats, mats)\n",
"print(pmap(jnp.mean)(result))"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "jbw_hRx7rDzX"
},
"outputs": [],
"source": [
"timeit -n 5 -r 5 pmap(jnp.dot)(mats, mats).block_until_ready()"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "xf5N9ZRirJhL"
},
"source": [
"### Collective communication operations"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "9i1PfxUvrThh"
},
"outputs": [],
"source": [
"from functools import partial\n",
"from jax.lax import psum\n",
"\n",
"@partial(pmap, axis_name='i')\n",
"def normalize(x):\n",
" return x / psum(x, 'i')\n",
"\n",
"print(normalize(jnp.arange(8.)))"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "lnvwnlOFrVa-"
},
"outputs": [],
"source": [
"@partial(pmap, axis_name='rows')\n",
"@partial(pmap, axis_name='cols')\n",
"def f(x):\n",
" row_sum = psum(x, 'rows')\n",
" col_sum = psum(x, 'cols')\n",
" total_sum = psum(x, ('rows', 'cols'))\n",
" return row_sum, col_sum, total_sum\n",
"\n",
"x = jnp.arange(8.).reshape((4, 2))\n",
"a, b, c = f(x)\n",
"\n",
"print(\"input:\\n\", x)\n",
"print(\"row sum:\\n\", a)\n",
"print(\"col sum:\\n\", b)\n",
"print(\"total sum:\\n\", c)"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "f-FBsWeo1AXE"
},
"source": [
"<img src=\"https://raw.githubusercontent.com/jax-ml/jax/main/cloud_tpu_colabs/images/nested_pmap.png\" width=\"70%\"/>"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "jC-KIMQ1q-lK"
},
"source": [
"For more, see the [`pmap` cookbook](https://colab.research.google.com/github/jax-ml/jax/blob/main/cloud_tpu_colabs/Pmap_Cookbook.ipynb)."
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "-A-oVDo6rdWA"
},
"source": [
"### Compose pmap with other transforms!"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "WC_dMIN2rgTZ"
},
"outputs": [],
"source": [
"@pmap\n",
"def f(x):\n",
" y = jnp.sin(x)\n",
" @pmap\n",
" def g(z):\n",
" return jnp.cos(z) * jnp.tan(y.sum()) * jnp.tanh(x).sum()\n",
" return grad(lambda w: jnp.sum(g(w)))(x)\n",
"\n",
"f(x)"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "apuACjPWrixV"
},
"outputs": [],
"source": [
"grad(lambda x: jnp.sum(f(x)))(x)"
]
},
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "WD9xtROsYX4i"
},
"source": [
"### Compose everything"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "h65c9AQCWAyn"
},
"outputs": [],
"source": [
"from jax import jvp, vjp # forward and reverse-mode\n",
"\n",
"curry = lambda f: partial(partial, f)\n",
"\n",
"@curry\n",
"def jacfwd(fun, x):\n",
" pushfwd = partial(jvp, fun, (x,)) # jvp!\n",
" std_basis = jnp.eye(np.size(x)).reshape((-1,) + jnp.shape(x)),\n",
" y, jac_flat = vmap(pushfwd, out_axes=(None, -1))(std_basis) # vmap!\n",
" return jac_flat.reshape(jnp.shape(y) + jnp.shape(x))\n",
"\n",
"@curry\n",
"def jacrev(fun, x):\n",
" y, pullback = vjp(fun, x) # vjp!\n",
" std_basis = jnp.eye(np.size(y)).reshape((-1,) + jnp.shape(y))\n",
" jac_flat, = vmap(pullback)(std_basis) # vmap!\n",
" return jac_flat.reshape(jnp.shape(y) + jnp.shape(x))\n",
"\n",
"def hessian(fun):\n",
" return jit(jacfwd(jacrev(fun))) # jit!"
]
},
{
"cell_type": "code",
"execution_count": 0,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "G9qDX84RWhW7"
},
"outputs": [],
"source": [
"input_hess = hessian(lambda inputs: loss(params, (inputs, targets)))\n",
"per_example_hess = pmap(input_hess) # pmap!\n",
"per_example_hess(inputs)"
]
}
],
"metadata": {
"accelerator": "TPU",
"colab": {
"collapsed_sections": [
"AvXl1WDPKjmV"
],
"name": "JAX demo.ipynb",
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.7"
}
},
"nbformat": 4,
"nbformat_minor": 1
}