mirror of
https://github.com/ROCm/jax.git
synced 2025-04-14 10:56:06 +00:00

This test started failing when we changed our CI to use L4 GPUs. Using highest precision resolves the problem.
70 lines
2.0 KiB
Python
70 lines
2.0 KiB
Python
# Copyright 2018 The JAX Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# https://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import os
|
|
import sys
|
|
import zlib
|
|
|
|
from absl.testing import absltest
|
|
from absl.testing import parameterized
|
|
|
|
import numpy as np
|
|
|
|
import jax
|
|
from jax import random
|
|
import jax.numpy as jnp
|
|
from jax._src import test_util as jtu
|
|
|
|
del jtu # Needed for flags
|
|
|
|
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
|
from examples import kernel_lsq
|
|
sys.path.pop()
|
|
|
|
jax.config.parse_flags_with_absl()
|
|
|
|
|
|
def _CheckShapeAgreement(test_case, init_fun, apply_fun, input_shape):
|
|
jax_rng = random.key(0)
|
|
result_shape, params = init_fun(jax_rng, input_shape)
|
|
result = apply_fun(params, test_case.rng.normal(size=input_shape).astype("float32"))
|
|
test_case.assertEqual(result.shape, result_shape)
|
|
|
|
|
|
class ExamplesTest(parameterized.TestCase):
|
|
|
|
def setUp(self):
|
|
self.rng = np.random.default_rng(zlib.adler32(self.__class__.__name__.encode()))
|
|
|
|
def testKernelRegressionGram(self):
|
|
n, d = 100, 20
|
|
xs = self.rng.normal(size=(n, d))
|
|
kernel = lambda x, y: jnp.dot(x, y)
|
|
np.testing.assert_allclose(kernel_lsq.gram(kernel, xs), jnp.dot(xs, xs.T), atol=1E-5)
|
|
|
|
@jax.default_matmul_precision("float32")
|
|
def testKernelRegressionTrainAndPredict(self):
|
|
n, d = 100, 20
|
|
truth = self.rng.normal(size=d)
|
|
xs = self.rng.normal(size=(n, d))
|
|
ys = jnp.dot(xs, truth)
|
|
kernel = lambda x, y: jnp.dot(x, y)
|
|
predict = kernel_lsq.train(kernel, xs, ys)
|
|
np.testing.assert_allclose(predict(xs), ys, atol=1e-3, rtol=1e-3)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
absltest.main()
|