mirror of
https://github.com/ROCm/jax.git
synced 2025-04-14 19:06:07 +00:00
736 lines
23 KiB
Python
736 lines
23 KiB
Python
# Copyright 2018 The JAX Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# https://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
from collections import namedtuple
|
|
from functools import partial
|
|
import gc
|
|
import operator
|
|
|
|
import numpy as np
|
|
from absl.testing import absltest
|
|
from absl.testing import parameterized
|
|
|
|
import jax
|
|
from jax import lax
|
|
from jax import numpy as jnp
|
|
from jax import jvp, linearize, vjp, jit, make_jaxpr
|
|
from jax.api_util import flatten_fun_nokwargs, debug_info
|
|
from jax._src import config
|
|
from jax._src import core
|
|
from jax._src import linear_util as lu
|
|
from jax._src import util
|
|
from jax._src import test_util as jtu
|
|
from jax._src.core import ShapedArray, DBIdx
|
|
from jax._src.interpreters import partial_eval as pe
|
|
from jax._src.lax import control_flow as lax_control_flow
|
|
|
|
config.parse_flags_with_absl()
|
|
|
|
__ = pe.PartialVal.unknown(ShapedArray((), np.float32))
|
|
|
|
def call(f, *args):
|
|
return jit(f)(*args)
|
|
|
|
def core_call(f, *args):
|
|
args, in_tree = jax.tree.flatten(args)
|
|
dbg = debug_info("core_call_test", f, args, {})
|
|
f, out_tree = flatten_fun_nokwargs(lu.wrap_init(f, debug_info=dbg), in_tree)
|
|
out = core.call_p.bind(f, *args)
|
|
return jax.tree.unflatten(out_tree(), out)
|
|
# call = core_call
|
|
core_call = util.curry(core_call)
|
|
|
|
@util.curry
|
|
def core_closed_call(f, *args):
|
|
args, in_tree = jax.tree.flatten(args)
|
|
dbg = debug_info("core_closed_call_test", f, args, {})
|
|
f, out_tree = flatten_fun_nokwargs(lu.wrap_init(f, debug_info=dbg), in_tree)
|
|
out = core.closed_call_p.bind(f, *args)
|
|
return jax.tree.unflatten(out_tree(), out)
|
|
|
|
def simple_fun(x, y):
|
|
return jnp.sin(x * y)
|
|
|
|
def simple_fun_fanout(x, y):
|
|
return jnp.sin(x * y) * x
|
|
|
|
def fun_with_call(x):
|
|
return call(jnp.sin, x)
|
|
|
|
def fun_with_nested_calls(x):
|
|
def f(y):
|
|
y2 = jnp.sin(y) + 1.0 + (2.0 * x)
|
|
|
|
@jit
|
|
def g(z):
|
|
return y2 * z * x + (x * y)
|
|
|
|
return call(g, y)
|
|
|
|
return call(f, x)
|
|
|
|
def error(*args):
|
|
def f(*args):
|
|
assert False
|
|
return f
|
|
|
|
def fun_with_nested_calls_2(x):
|
|
def bar(y):
|
|
def baz(w):
|
|
q = call(lambda x: y, x)
|
|
q = q + call(lambda: y)
|
|
q = q + call(lambda y: w + y, y)
|
|
q = call(lambda w: call(jnp.sin, x) * y, 1.0) + q
|
|
return q
|
|
p, t = jvp(baz, (x + 1.0,), (y,))
|
|
return t + (x * p)
|
|
return call(bar, x)
|
|
|
|
def fun_call_jitted(x):
|
|
@jit
|
|
def g(z):
|
|
return x * z
|
|
|
|
return call(g, x)
|
|
|
|
def fun_with_two_calls(x):
|
|
return call(jnp.sin, x) + call(jnp.cos, x)
|
|
|
|
def fun_with_call_closure(x):
|
|
def foo(y, z):
|
|
return (x * x) * jnp.sin(y) * z
|
|
|
|
return call(foo, x, jnp.cos(x)) + x
|
|
|
|
def product_io_fun(x, y):
|
|
xa = x['a']
|
|
xb = x['b']
|
|
y1, (y2, y3) = y
|
|
return jnp.sin(xa + y2), [xb, (y1, y3)]
|
|
|
|
|
|
_rng = np.random.RandomState(42)
|
|
R = _rng.randn
|
|
CallSpec = namedtuple('CallSpec', ['fun', 'args'])
|
|
test_specs_base = [
|
|
CallSpec(simple_fun, (R(3, 2), R(3, 2))),
|
|
CallSpec(simple_fun_fanout, (R(3, 2), R(3, 2))),
|
|
CallSpec(product_io_fun, ({'a': R(2, 2), 'b': R(2, 2)},
|
|
(R(2, 2), (R(2, 2), R(2, 2))))),
|
|
CallSpec(fun_with_call, (R(3, 2),)),
|
|
CallSpec(fun_with_two_calls, (R(3, 2),)),
|
|
CallSpec(fun_with_call_closure, (R(3, 2),)),
|
|
CallSpec(fun_call_jitted, (R(1,),)),
|
|
CallSpec(fun_with_nested_calls, (R(),)),
|
|
CallSpec(fun_with_nested_calls, (R(3, 2),)),
|
|
CallSpec(fun_with_nested_calls_2, (R(1, 2),)),
|
|
]
|
|
|
|
def jvp_unlinearized(f, primals, tangents):
|
|
out, jvp = linearize(f, *primals)
|
|
return out, jvp(*tangents)
|
|
|
|
test_specs = []
|
|
for ts in test_specs_base:
|
|
test_specs.append(ts)
|
|
test_specs.append(CallSpec(partial(jvp, ts.fun), (ts.args, ts.args)))
|
|
test_specs.append(CallSpec(jit(ts.fun), ts.args))
|
|
test_specs.append(CallSpec(jit(jit(ts.fun)), ts.args))
|
|
test_specs.append(CallSpec(core_call(ts.fun), ts.args))
|
|
test_specs.append(CallSpec(core_call(jit(ts.fun)), ts.args))
|
|
test_specs.append(CallSpec(core_call(core_call(ts.fun)), ts.args))
|
|
test_specs.append(CallSpec(core_closed_call(ts.fun), ts.args))
|
|
test_specs.append(CallSpec(core_closed_call(jit(ts.fun)), ts.args))
|
|
test_specs.append(CallSpec(core_closed_call(core_closed_call(ts.fun)), ts.args))
|
|
test_specs.append(CallSpec(partial(jvp_unlinearized, ts.fun),
|
|
(ts.args, ts.args)))
|
|
|
|
|
|
def fwd_deriv(f):
|
|
def df(x):
|
|
return jvp(f, (x,), (1.0,))[1]
|
|
|
|
return df
|
|
|
|
|
|
class CoreTest(jtu.JaxTestCase):
|
|
|
|
def test_tree_map(self):
|
|
xs = ({'a': 1}, [2, 3])
|
|
ys = ({'a': 10}, [20, 30])
|
|
ys_bad = ({'a': 10, 'b': 10}, [20, 30])
|
|
zs = ({'a': 11}, [22, 33])
|
|
|
|
f = lambda x, y: x + y
|
|
assert jax.tree.map(f, xs, ys) == zs
|
|
try:
|
|
jax.tree.map(f, xs, ys_bad)
|
|
assert False
|
|
except (TypeError, ValueError):
|
|
pass
|
|
|
|
def test_tree_flatten(self):
|
|
flat, _ = jax.tree.flatten(({'a': 1}, [2, 3], 4))
|
|
assert flat == [1, 2, 3, 4]
|
|
|
|
def test_tree_unflatten(self):
|
|
tree = [(1, 2), {"roy": (3, [4, 5, ()])}]
|
|
flat, treedef = jax.tree.flatten(tree)
|
|
assert flat == [1, 2, 3, 4, 5]
|
|
tree2 = jax.tree.unflatten(treedef, flat)
|
|
nodes_equal = jax.tree.map(operator.eq, tree, tree2)
|
|
assert jax.tree.reduce(operator.and_, nodes_equal)
|
|
|
|
@jtu.sample_product(
|
|
dtype=[*jtu.dtypes.all, object, [('i', 'i4'), ('f', 'f4')]]
|
|
)
|
|
def test_is_valid_jaxtype(self, dtype):
|
|
arr = np.zeros(10, dtype=dtype)
|
|
if dtype in jtu.dtypes.all:
|
|
self.assertTrue(core.valid_jaxtype(arr))
|
|
else:
|
|
self.assertFalse(core.valid_jaxtype(arr))
|
|
|
|
@parameterized.named_parameters(
|
|
(str(i), *spec) for i, spec in enumerate(test_specs))
|
|
def test_jit(self, f, args):
|
|
jtu.check_close(jit(f)(*args), f(*args))
|
|
|
|
@parameterized.named_parameters(
|
|
(str(i), *spec) for i, spec in enumerate(test_specs))
|
|
def test_jvp(self, f, args):
|
|
jtu.check_jvp(f, partial(jvp, f), args, rtol={np.float32: 3e-2})
|
|
|
|
def test_jvp_zeros(self):
|
|
def foo(x):
|
|
def bar(y):
|
|
return jnp.sin(x * y)
|
|
return jvp(bar, (3 * x,), (2 * x,))
|
|
|
|
jtu.check_eq(jit(foo)(0.5), foo(0.5))
|
|
|
|
@parameterized.parameters(test_specs)
|
|
def test_jvp_linearized(self, f, args):
|
|
jtu.check_jvp(f, partial(jvp_unlinearized, f), args,
|
|
rtol={np.float32: 3e-2})
|
|
|
|
@parameterized.named_parameters(
|
|
(str(i), *spec) for i, spec in enumerate(test_specs))
|
|
def test_vjp(self, f, args):
|
|
jtu.check_vjp(f, partial(vjp, f), args,
|
|
rtol={np.float32: 3e-1, np.float64: 1e-5},
|
|
atol={np.float32: 1e-2, np.float64: 1e-5})
|
|
|
|
def test_jvp_closure(self):
|
|
def foo(x):
|
|
def bar(y):
|
|
return jnp.multiply(x, y)
|
|
return jvp(bar, (3.0,), (1.0,))[1]
|
|
ans = jvp(foo, (1.0,), (2.0,))
|
|
assert ans == (1.0, 2.0), ans
|
|
|
|
def test_jit_closure(self):
|
|
def foo(x):
|
|
@jit
|
|
def bar(y):
|
|
return x + y
|
|
return bar(0.0)
|
|
assert jvp(foo, (1.0,), (2.0,)) == (1.0, 2.0)
|
|
|
|
def test_simple_jit(self):
|
|
def foo(x):
|
|
if x.shape == ():
|
|
return x + 1.
|
|
else:
|
|
return x + 2.
|
|
|
|
foo2 = jit(foo)
|
|
foo3 = jit(foo2)
|
|
|
|
x1, y1 = np.array(1.0), np.array(2.0)
|
|
assert foo(x1) == y1
|
|
assert foo2(x1) == y1
|
|
assert foo3(x1) == y1
|
|
|
|
x2, y2 = np.array([1.0, 2.0]), np.array([3.0, 4.0])
|
|
assert np.all(foo(x2) == y2)
|
|
assert np.all(foo2(x2) == y2)
|
|
assert np.all(foo3(x2) == y2)
|
|
|
|
def test_product_jit(self):
|
|
def foo(x, tup):
|
|
y, z = tup
|
|
w = x + z
|
|
return (w, {'x': y}), z
|
|
|
|
foo2 = jit(foo)
|
|
foo3 = jit(foo2)
|
|
|
|
args = (1.0, (2.0, 3.0))
|
|
expected_output = ((4.0, {'x': 2.0}), 3.0)
|
|
|
|
assert foo(*args) == expected_output
|
|
assert foo2(*args) == expected_output
|
|
assert foo3(*args) == foo(*args)
|
|
|
|
def test_jvp_repeated_fwd(self):
|
|
d_sin = fwd_deriv(jnp.sin)
|
|
d2_sin = fwd_deriv(d_sin)
|
|
d3_sin = fwd_deriv(d2_sin)
|
|
|
|
assert d_sin(0.0) == 1.0
|
|
assert d2_sin(0.0) == 0.0
|
|
assert d3_sin(0.0) == -1.0
|
|
|
|
@jtu.thread_unsafe_test() # gc isn't predictable when threaded
|
|
def test_reference_cycles(self):
|
|
if jtu.TEST_NUM_THREADS.value > 1:
|
|
self.skipTest("Test does not work with multiple threads")
|
|
gc.collect()
|
|
|
|
def f(x):
|
|
return x.sum()
|
|
|
|
fn = partial(linearize, f)
|
|
params = jnp.zeros([])
|
|
|
|
debug = gc.get_debug()
|
|
try:
|
|
fn(params)
|
|
gc.set_debug(gc.DEBUG_SAVEALL)
|
|
self.assertEqual(gc.collect(), 0, msg=str(gc.garbage))
|
|
finally:
|
|
gc.set_debug(debug)
|
|
|
|
@jtu.thread_unsafe_test() # gc isn't predictable when threaded
|
|
def test_reference_cycles_jit(self):
|
|
if jtu.TEST_NUM_THREADS.value > 1:
|
|
self.skipTest("Test does not work with multiple threads")
|
|
gc.collect()
|
|
|
|
def f(x):
|
|
return x.sum()
|
|
|
|
fn = jit(f)
|
|
params = jnp.zeros([])
|
|
|
|
debug = gc.get_debug()
|
|
try:
|
|
fn(params).block_until_ready()
|
|
gc.set_debug(gc.DEBUG_SAVEALL)
|
|
self.assertEqual(gc.collect(), 0, msg=str(gc.garbage))
|
|
finally:
|
|
gc.set_debug(debug)
|
|
|
|
def test_invalid_shape_error_with_jit_tracer_passed(self):
|
|
@jax.jit
|
|
def g_jit(x):
|
|
return jnp.zeros(shape=(2, x))
|
|
|
|
@jax.vmap
|
|
def g_vmap(x):
|
|
return jnp.zeros(shape=(2, x))
|
|
|
|
with self.assertRaisesRegex(
|
|
TypeError,
|
|
'This concrete value was not available in'
|
|
+ ' Python because it depends on',
|
|
):
|
|
g_jit(1)
|
|
|
|
with self.assertRaisesRegex(TypeError,
|
|
'This BatchTracer with object id'):
|
|
g_vmap(jnp.ones((1, )))
|
|
|
|
def test_dropvar_avals(self):
|
|
def f(x):
|
|
def body(c, _):
|
|
return c, None
|
|
(x1, x2), _ = jax.lax.scan(body, (x, x), None, length=1)
|
|
return [x2]
|
|
|
|
aval = core.ShapedArray((), jnp.dtype('int32'))
|
|
pval = pe.PartialVal.unknown(aval)
|
|
jaxpr, _, _ = pe.trace_to_jaxpr_nounits(
|
|
lu.wrap_init(f,
|
|
debug_info=debug_info("test", f, (0,), {})),
|
|
[pval], False)
|
|
dropvar, b = jaxpr.eqns[0].outvars
|
|
self.assertEqual(dropvar.aval, aval)
|
|
|
|
def test_input_residual_forwarding(self):
|
|
# https://github.com/jax-ml/jax/pull/11151
|
|
x = jnp.arange(3 * 4.).reshape(3, 4)
|
|
y = jnp.arange(4 * 3.).reshape(4, 3)
|
|
|
|
g = jax.jit(jnp.dot)
|
|
|
|
def f(y):
|
|
z, g_lin = jax.linearize(lambda y: g(x, y), y)
|
|
zdot = g_lin(y)
|
|
return z, zdot
|
|
|
|
jaxpr = jax.make_jaxpr(f)(y)
|
|
e1, e2 = jaxpr.jaxpr.eqns
|
|
self.assertLen(e1.outvars, 1) # only primal out, no residuals
|
|
self.assertEqual(e1.outvars[0].aval.shape, (3, 3)) # only primal out shape
|
|
|
|
|
|
@jtu.with_config(jax_pprint_use_color=False)
|
|
class JaxprTypeChecks(jtu.JaxTestCase):
|
|
|
|
def setUp(self):
|
|
super().setUp()
|
|
lax_control_flow._initial_style_open_jaxpr.cache_clear()
|
|
lax_control_flow._initial_style_jaxpr.cache_clear()
|
|
lax_control_flow.common._pad_jaxpr_constvars.cache_clear()
|
|
|
|
def test_check_jaxpr_correct(self):
|
|
jaxpr = make_jaxpr(lambda x: jnp.sin(x) + jnp.cos(x))(1.).jaxpr
|
|
core.check_jaxpr(jaxpr)
|
|
|
|
def test_check_jaxpr_cond_correct(self):
|
|
jaxpr = make_jaxpr(lambda x: lax.switch(0, [jnp.sin, jnp.cos], x))(1.).jaxpr
|
|
core.check_jaxpr(jaxpr)
|
|
|
|
def test_check_jaxpr_jit_invalid(self):
|
|
jaxpr = make_jaxpr(jax.jit(lambda x, y: x + 1))(1., 2.).jaxpr
|
|
pjit_eqn, = jaxpr.eqns
|
|
jaxpr._eqns[0] = pjit_eqn.replace(invars=())
|
|
self.assertRaisesRegex(
|
|
core.JaxprTypeError,
|
|
'0 operands cannot call jaxpr with 2 inputs',
|
|
lambda: core.check_jaxpr(jaxpr))
|
|
|
|
def test_check_jaxpr_cond_invalid(self):
|
|
jaxpr = make_jaxpr(lambda x: lax.switch(0, [jnp.sin, jnp.cos], x))(1.).jaxpr
|
|
cond = next(eqn for eqn in jaxpr.eqns if eqn.primitive.name == 'cond')
|
|
cond.params['branches'][0].jaxpr._invars = ()
|
|
self.assertRaisesRegex(
|
|
core.JaxprTypeError,
|
|
'cond branch 0 takes 0 inputs, branch 1 takes 1',
|
|
lambda: core.check_jaxpr(jaxpr))
|
|
|
|
def test_check_jaxpr_scan_correct(self):
|
|
def f(c, x):
|
|
b = jnp.cos(jnp.sum(jnp.sin(x)) + jnp.sum(jnp.cos(c)))
|
|
c = jnp.sin(c * b)
|
|
return c, b
|
|
xs = jnp.ones((5, 3))
|
|
c = jnp.ones(4)
|
|
jaxpr = make_jaxpr(partial(lax.scan, f))(c, xs).jaxpr
|
|
core.check_jaxpr(jaxpr)
|
|
|
|
def test_check_jaxpr_invalid_long(self):
|
|
# jaxprs can be large, and this tests that when large ones are printed for
|
|
# context in jaxpr typechecking errors, they're not printed entirely
|
|
|
|
def enlarge(f, n):
|
|
def g(x):
|
|
for _ in range(n):
|
|
x = x + x
|
|
x = f(x)
|
|
for _ in range(n):
|
|
x = x + x
|
|
return x
|
|
return g
|
|
|
|
jaxpr = make_jaxpr(enlarge(
|
|
lambda x: lax.switch(0, [jnp.sin, jnp.cos], x), 100))(1.).jaxpr
|
|
|
|
cond = next(eqn for eqn in jaxpr.eqns if eqn.primitive.name == 'cond')
|
|
cond.params['branches'][0].jaxpr._invars = ()
|
|
msg = ''
|
|
try:
|
|
core.check_jaxpr(jaxpr)
|
|
except core.JaxprTypeError as e:
|
|
msg, = e.args
|
|
|
|
self.assertIn('cond branch 0 takes 0 inputs, branch 1 takes 1', msg)
|
|
self.assertIn('in equation:', msg)
|
|
self.assertIn('from source:', msg)
|
|
self.assertIn('while checking jaxpr:', msg)
|
|
self.assertLess(msg.count('\n'), 200)
|
|
|
|
def test_check_jaxpr_eqn_mismatch(self):
|
|
def f(x):
|
|
return jnp.sin(x) + jnp.cos(x)
|
|
|
|
def new_jaxpr():
|
|
return make_jaxpr(f)(jnp.float32(1.)).jaxpr
|
|
|
|
# jaxpr is:
|
|
#
|
|
# { lambda ; a.
|
|
# let b = sin a
|
|
# c = cos a
|
|
# d = add b c
|
|
# in (d,) }
|
|
#
|
|
# NB: eqns[0].outvars[0] and eqns[2].invars[0] are both 'b'
|
|
|
|
jaxpr = new_jaxpr()
|
|
# int, not float!
|
|
jaxpr.eqns[0].outvars[0].aval = core.ShapedArray((), jnp.dtype(jnp.int32))
|
|
self.assertRaisesRegex(
|
|
core.JaxprTypeError,
|
|
r"Value for variable 'b' inconsistently typed as f32\[\] "
|
|
r"for let-binder of type i32\[\]\n\nin equation:\n\nb:i32\[\] = sin a",
|
|
lambda: core.check_jaxpr(jaxpr))
|
|
|
|
jaxpr = new_jaxpr()
|
|
jaxpr.eqns[0].outvars[0].aval = core.ShapedArray((2, 3),
|
|
jnp.dtype(jnp.float32))
|
|
self.assertRaisesRegex(
|
|
core.JaxprTypeError,
|
|
r"Value for variable 'b' inconsistently typed as f32\[\] "
|
|
r"for let-binder of type f32\[2,3\]\n\nin equation:\n\nb:f32\[2,3\] = sin a",
|
|
lambda: core.check_jaxpr(jaxpr))
|
|
|
|
def test_jaxpr_dropvar_from_jit_call(self):
|
|
def inner(x):
|
|
return x + 1, x + 2
|
|
|
|
def f(x):
|
|
_, y = jit(inner)(x)
|
|
return y + 3
|
|
|
|
jaxpr = make_jaxpr(f)(1).jaxpr
|
|
assert isinstance(jaxpr.eqns[0].outvars[0], core.DropVar)
|
|
core.check_jaxpr(jaxpr)
|
|
|
|
def test_jaxpr_dropvar_from_loop(self):
|
|
def f(x):
|
|
_, y = lax.while_loop(lambda s: s[0] < 0.,
|
|
lambda s: (jnp.sin(s[0]), jnp.cos(s[1])),
|
|
(x, x))
|
|
return y + 1.
|
|
|
|
jaxpr = make_jaxpr(f)(1.).jaxpr
|
|
assert isinstance(jaxpr.eqns[0].outvars[0], core.DropVar)
|
|
core.check_jaxpr(jaxpr)
|
|
|
|
def test_jaxpr_dropvar_from_cond(self):
|
|
def f(x):
|
|
_, y = lax.cond(x < 0.,
|
|
lambda x: (jnp.sin(x), x + 1.),
|
|
lambda x: (jnp.cos(x), x + 2.),
|
|
x)
|
|
return y
|
|
|
|
jaxpr = make_jaxpr(f)(1.).jaxpr
|
|
assert isinstance(jaxpr.eqns[-1].outvars[0], core.DropVar)
|
|
core.check_jaxpr(jaxpr)
|
|
|
|
def test_jaxpr_undefined_eqn_invar(self):
|
|
jaxpr = make_jaxpr(lambda x: jnp.sin(x) + jnp.cos(x))(1.).jaxpr
|
|
cos = next(eqn for eqn in jaxpr.eqns if eqn.primitive.name == 'cos')
|
|
cos.invars[0] = core.gensym(suffix='_test')(cos.invars[0].aval)
|
|
self.assertRaisesRegex(
|
|
core.JaxprTypeError,
|
|
r"Variable '.+_test' not defined\n\nin equation:",
|
|
lambda: core.check_jaxpr(jaxpr))
|
|
|
|
|
|
@jtu.with_config(jax_dynamic_shapes=True)
|
|
class DynamicShapesTest(jtu.JaxTestCase):
|
|
|
|
def test_staging_basic(self):
|
|
n = core.ShapedArray((), jnp.dtype('int32'), weak_type=False)
|
|
a = core.DShapedArray((DBIdx(0),), jnp.dtype('float32'), weak_type=False)
|
|
b = core.DShapedArray((DBIdx(0),), jnp.dtype('float32'), weak_type=False)
|
|
|
|
def f(x, y):
|
|
return x, y
|
|
|
|
jaxpr, _, _, () = pe.trace_to_jaxpr_dynamic(
|
|
lu.wrap_init(f,
|
|
debug_info=debug_info("test", f, (1, 2), {})),
|
|
[n, a, b], keep_inputs=[False, True, True])
|
|
|
|
self.assertLen(jaxpr.invars, 3)
|
|
self.assertEqual((jaxpr.invars[0],), jaxpr.invars[1].aval.shape)
|
|
self.assertEqual((jaxpr.invars[0],), jaxpr.invars[2].aval.shape)
|
|
|
|
self.assertLen(jaxpr.outvars, 2)
|
|
self.assertEqual((jaxpr.invars[0],), jaxpr.outvars[0].aval.shape)
|
|
self.assertEqual((jaxpr.invars[0],), jaxpr.outvars[1].aval.shape)
|
|
|
|
@unittest.skip('This test does not work with nested pjit and DShapedArray')
|
|
def test_staging_nested(self):
|
|
n = core.ShapedArray((), jnp.dtype('int32'), weak_type=False)
|
|
a = core.DShapedArray((DBIdx(0),), jnp.dtype('float32'), weak_type=False)
|
|
b = core.DShapedArray((DBIdx(0),), jnp.dtype('float32'), weak_type=False)
|
|
|
|
def f(x, y):
|
|
@jax.jit
|
|
def g(x, y, z, w):
|
|
return (x, w)
|
|
return g(x, y, x, y)
|
|
|
|
jaxpr, _, _, () = pe.trace_to_jaxpr_dynamic(
|
|
lu.wrap_init(f,
|
|
debug_info=debug_info("test", f, (0, 1), {})),
|
|
[n, a, b], keep_inputs=[False, True, True])
|
|
|
|
self.assertLen(jaxpr.invars, 1 + 2) # one axis size var, two other inputs
|
|
self.assertEqual((jaxpr.invars[0],), jaxpr.invars[1].aval.shape)
|
|
self.assertEqual((jaxpr.invars[0],), jaxpr.invars[2].aval.shape)
|
|
|
|
self.assertLen(jaxpr.outvars, 2)
|
|
self.assertEqual((jaxpr.invars[0],), jaxpr.outvars[0].aval.shape)
|
|
self.assertEqual((jaxpr.invars[0],), jaxpr.outvars[1].aval.shape)
|
|
|
|
self.assertLen(jaxpr.eqns, 1)
|
|
eqn = jaxpr.eqns[0]
|
|
self.assertIsInstance(eqn.primitive, core.CallPrimitive)
|
|
inner_jaxpr = eqn.params['call_jaxpr']
|
|
self.assertIsInstance(inner_jaxpr, core.Jaxpr)
|
|
|
|
self.assertLen(inner_jaxpr.invars, 1 + 4) # one axis size var
|
|
self.assertEqual((inner_jaxpr.invars[0],), inner_jaxpr.invars[1].aval.shape)
|
|
self.assertEqual((inner_jaxpr.invars[0],), inner_jaxpr.invars[2].aval.shape)
|
|
self.assertEqual((inner_jaxpr.invars[0],), inner_jaxpr.invars[3].aval.shape)
|
|
self.assertEqual((inner_jaxpr.invars[0],), inner_jaxpr.invars[4].aval.shape)
|
|
|
|
@unittest.skip('This test does not work with nested pjit and DShapedArray')
|
|
def test_staging_nested_including_shape_arg(self):
|
|
n = core.ShapedArray((), jnp.dtype('int32'), weak_type=False)
|
|
a = core.DShapedArray((DBIdx(0),), jnp.dtype('float32'), weak_type=False)
|
|
b = core.DShapedArray((DBIdx(0),), jnp.dtype('float32'), weak_type=False)
|
|
|
|
def f(x, y):
|
|
@jax.jit
|
|
def g(_, x, y, z, w):
|
|
return (x, w)
|
|
return g(x.shape[0], x, y, x, y)
|
|
|
|
jaxpr, _, _, () = pe.trace_to_jaxpr_dynamic(
|
|
lu.wrap_init(f,
|
|
debug_info=debug_info("test", f, (1, 2), {})),
|
|
[n, a, b], keep_inputs=[False, True, True])
|
|
|
|
# { lambda ; a:i32[] b:f32[a] c:f32[a]. let
|
|
# d:f32[a] e:f32[a] = xla_call[
|
|
# call_jaxpr={ lambda ; f:i32[] g:i32[] h:f32[f] i:f32[f] j:f32[f] k:f32[f]. let
|
|
#
|
|
# in (h, k) }
|
|
# name=g
|
|
# ] a a b c b c
|
|
# in (d, e) }
|
|
|
|
self.assertLen(jaxpr.eqns, 1)
|
|
eqn = jaxpr.eqns[0]
|
|
self.assertIsInstance(eqn.primitive, core.CallPrimitive)
|
|
inner_jaxpr = eqn.params['call_jaxpr']
|
|
self.assertIsInstance(inner_jaxpr, core.Jaxpr)
|
|
|
|
self.assertLen(inner_jaxpr.invars, 1 + 4) # one axis size var
|
|
self.assertEqual((inner_jaxpr.invars[0],), inner_jaxpr.invars[1].aval.shape)
|
|
self.assertEqual((inner_jaxpr.invars[0],), inner_jaxpr.invars[2].aval.shape)
|
|
self.assertEqual((inner_jaxpr.invars[0],), inner_jaxpr.invars[3].aval.shape)
|
|
self.assertEqual((inner_jaxpr.invars[0],), inner_jaxpr.invars[4].aval.shape)
|
|
|
|
def test_staging_primitive_applications(self):
|
|
n = core.ShapedArray((), jnp.dtype('int32'), weak_type=False)
|
|
a = core.DShapedArray((DBIdx(0),), jnp.dtype('float32'), weak_type=False)
|
|
b = core.DShapedArray((DBIdx(0),), jnp.dtype('float32'), weak_type=False)
|
|
|
|
def f(x, y):
|
|
z = lax.mul(x, y)
|
|
w = lax.sin(z)
|
|
u = lax.reduce_sum(w, [0])
|
|
return (u,)
|
|
|
|
jaxpr, _, _, () = pe.trace_to_jaxpr_dynamic(
|
|
lu.wrap_init(f,
|
|
debug_info=debug_info("test", f, (1, 2), {})),
|
|
[n, a, b], keep_inputs=[False, True, True])
|
|
|
|
self.assertLen(jaxpr.invars, 1 + 2) # one axis size var, two other inputs
|
|
self.assertLen(jaxpr.eqns, 3)
|
|
self.assertLen(jaxpr.eqns[0].outvars, 1)
|
|
self.assertEqual(jaxpr.eqns[0].outvars[0].aval.shape,
|
|
jaxpr.invars[1].aval.shape)
|
|
|
|
self.assertLen(jaxpr.outvars, 1)
|
|
self.assertEqual(jaxpr.outvars[0].aval.shape, ())
|
|
|
|
@unittest.skip('This test does not work with nested pjit and DShapedArray')
|
|
def test_typecheck_staging_nested(self):
|
|
n = core.ShapedArray((), jnp.dtype('int32'), weak_type=False)
|
|
m = core.ShapedArray((), jnp.dtype('int32'), weak_type=False)
|
|
a = core.DShapedArray((DBIdx(0),), jnp.dtype('float32'), weak_type=False)
|
|
b = core.DShapedArray((DBIdx(1),), jnp.dtype('float32'), weak_type=False)
|
|
|
|
def f(a, b):
|
|
@jax.jit
|
|
def g(x): return x
|
|
return g(a),
|
|
|
|
jaxpr, _, _, () = pe.trace_to_jaxpr_dynamic(
|
|
lu.wrap_init(f,
|
|
debug_info=debug_info("test", f, (1, 2), {})),
|
|
[n, m, a, b], keep_inputs=[False, False, True, True])
|
|
# { lambda ; a:i32[] b:i32[] c:f32[a] d:f32[b]. let
|
|
# e:f32[a] = xla_call[
|
|
# call_jaxpr={ lambda ; f:i32[] g:f32[f]. let in (g,) }
|
|
# name=g
|
|
# ] a c
|
|
# in (e,) }
|
|
core.check_jaxpr(jaxpr) # no problems here...
|
|
|
|
# Let's introduce a type error by applying the called jaxpr to arguments
|
|
# with types which aren't consistent with its input binders:
|
|
_, _, c, d = jaxpr.invars
|
|
jaxpr.eqns[0].invars[1] = d
|
|
# { lambda ; a:i32[] b:i32[] c:f32[a] d:f32[b]. let
|
|
# e:f32[a] = xla_call[
|
|
# call_jaxpr={ lambda ; f:i32[] g:f32[f]. let in (g,) }
|
|
# name=g
|
|
# ] a d !!! type error here !!!
|
|
# in (e,) }
|
|
with self.assertRaisesRegex(TypeError, "passes operand"):
|
|
core.check_jaxpr(jaxpr)
|
|
|
|
# Restore the original jaxpr:
|
|
jaxpr.eqns[0].invars[1] = c
|
|
core.check_jaxpr(jaxpr) # no problems here...
|
|
|
|
# Let's introduce another type error by setting the call result let binders
|
|
# to have the wrong type:
|
|
jaxpr.eqns[0].outvars[0] = core.Var('', d.aval)
|
|
# { lambda ; a:i32[] b:i32[] c:f32[a] d:f32[b]. let
|
|
# e:f32[b] = xla_call[ !!! type error here !!!
|
|
# call_jaxpr={ lambda ; f:i32[] g:f32[f]. let in (g,) }
|
|
# name=g
|
|
# ] a c
|
|
# in (h,) }
|
|
with self.assertRaisesRegex(TypeError, "inconsistently typed as"):
|
|
core.check_jaxpr(jaxpr)
|
|
|
|
def test_check_jaxpr_key_reuse(self):
|
|
with config.debug_key_reuse(True):
|
|
def f(seed):
|
|
key = jax.random.key(seed)
|
|
return jax.random.uniform(key) + jax.random.normal(key)
|
|
with jax.enable_checks(True):
|
|
with self.assertRaises(jax.errors.KeyReuseError):
|
|
jax.jit(f)(0)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
absltest.main(testLoader=jtu.JaxTestLoader())
|