mirror of
https://github.com/ROCm/jax.git
synced 2025-04-14 10:56:06 +00:00

batching dimension groups. Previously, we allow the use of ellipsis ... in the Einsum like notation to represent leading batching dimensions in one group of operands and results. We now allow the use of ellipsis optionally followed by a single digit, such as ...2, to represent leading batching dimensions for multiple groups of operands and results. Add tests. PiperOrigin-RevId: 718875251
487 lines
20 KiB
Python
487 lines
20 KiB
Python
# Copyright 2024 The JAX Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# https://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from absl.testing import absltest
|
|
from jax._src import test_util as jtu
|
|
from jax._src.lib.mlir import ir
|
|
from jax._src.lib.mlir.dialects import sdy
|
|
from jax._src.custom_partitioning_sharding_rule import ArrayMapping, BATCHING, CompoundFactor, sdy_sharding_rule_to_mlir, str_to_sdy_sharding_rule, SdyShardingRule
|
|
from jax._src.lib.mlir.dialects import hlo as stablehlo
|
|
|
|
|
|
class SdyShardingRuleTest(jtu.JaxTestCase):
|
|
def test_compound_factor_not_enough_factors(self):
|
|
with self.assertRaisesRegex(ValueError, "A compound factor should contain at least two factors"):
|
|
CompoundFactor("i")
|
|
|
|
def test_compound_factor_batching_now_allowed(self):
|
|
with self.assertRaisesRegex(ValueError, "Ellipsis can't be used in a compound factor"):
|
|
CompoundFactor(BATCHING, "i")
|
|
|
|
def test_compound_factor_element_not_a_str(self):
|
|
with self.assertRaisesRegex(ValueError, "Each element of CompoundFactor must be a str"):
|
|
CompoundFactor("i", 2)
|
|
|
|
def test_compound_factor_str(self):
|
|
c = CompoundFactor("i", "j", "k")
|
|
self.assertEqual(str(c), "('i', 'j', 'k')")
|
|
|
|
def test_value_mapping_element_not_a_str_or_compound_factor(self):
|
|
with self.assertRaisesRegex(ValueError, "Each element of ArrayMapping must be a str or CompoundFactor"):
|
|
ArrayMapping(CompoundFactor("i", "j"), 3)
|
|
|
|
def test_value_mapping_factor_name_not_start_with_letter(self):
|
|
with self.assertRaisesRegex(ValueError, "Factor names have to start with a letter"):
|
|
ArrayMapping("3i", "j")
|
|
|
|
def test_value_mapping_ellipsis_not_first(self):
|
|
with self.assertRaisesRegex(ValueError, "Ellipsis can only be used at the beginning of a dimension"):
|
|
ArrayMapping("i_j", BATCHING)
|
|
|
|
def test_value_mapping_str(self):
|
|
v = ArrayMapping(f"{BATCHING}2", "m", CompoundFactor("i", "j"), "k")
|
|
self.assertEqual(str(v), f"('{BATCHING}2', 'm', ('i', 'j'), 'k')")
|
|
|
|
def test_sdy_sharding_rule_factor_size_not_used(self):
|
|
with self.assertRaisesRegex(ValueError, "Factor k is not used"):
|
|
SdyShardingRule(("i",), ("j",), k=10)
|
|
|
|
def test_sdy_sharding_rule_factor_sizes_missing(self):
|
|
with self.assertRaisesRegex(
|
|
ValueError,
|
|
"Factor k is only used in compound factors; must specify its size"):
|
|
SdyShardingRule((ArrayMapping("i"), ArrayMapping("j")),
|
|
(ArrayMapping(CompoundFactor("j", "k")),))
|
|
|
|
def test_sdy_sharding_rule_factor_size_not_necessary(self):
|
|
with self.assertRaisesRegex(
|
|
ValueError,
|
|
"Factor i represents a whole dimension; do not specify its size"):
|
|
SdyShardingRule((ArrayMapping("i"),), (ArrayMapping("j"),), i=10)
|
|
|
|
def test_sdy_sharding_rule_compound_factor_size_not_necessary(self):
|
|
with self.assertRaisesRegex(
|
|
ValueError,
|
|
"Factor i represents a whole dimension; do not specify its size"):
|
|
SdyShardingRule((ArrayMapping(CompoundFactor("i", "j")),),
|
|
(ArrayMapping("i"),), i=10, j=20)
|
|
|
|
def test_sdy_sharding_rule_str(self):
|
|
r = SdyShardingRule((ArrayMapping("i"), ArrayMapping("j")),
|
|
(ArrayMapping(CompoundFactor("j", "k")),), k=10)
|
|
self.assertEqual(str(r), "SdyShardingRule((('i',), ('j',)), ((('j', 'k'),),), {'k': 10})")
|
|
|
|
|
|
class StrToSdyShardingRuleTest(jtu.JaxTestCase):
|
|
|
|
def test_rule_is_not_a_str(self):
|
|
with self.assertRaisesRegex(TypeError, "rule must be a str"):
|
|
str_to_sdy_sharding_rule(1)
|
|
|
|
def test_factor_sizes_is_not_a_proper_dict(self):
|
|
with self.assertRaisesRegex(
|
|
TypeError, "factor_sizes must be a dict of str to int"):
|
|
str_to_sdy_sharding_rule("i->j", i="j")
|
|
|
|
def test_sharding_rule_ellipsis_not_complete(self):
|
|
with self.assertRaisesRegex(
|
|
ValueError, "Character '.' must be used inside ellipsis '...'"):
|
|
str_to_sdy_sharding_rule(".i -> j")
|
|
|
|
def test_sharding_rule_invalid_factor_name(self):
|
|
with self.assertRaisesRegex(ValueError, "Factor names have to start with a letter"):
|
|
str_to_sdy_sharding_rule("2i -> j")
|
|
|
|
def test_sharding_rule_missing_results(self):
|
|
with self.assertRaisesRegex(ValueError, "There is no -> in rule"):
|
|
str_to_sdy_sharding_rule("i")
|
|
|
|
def test_sharding_rule_inbalenced_brackets(self):
|
|
with self.assertRaisesRegex(ValueError, "Brackets are not balanced"):
|
|
str_to_sdy_sharding_rule("i j, k)->j")
|
|
|
|
def test_sharding_rule_inbalenced_brackets2(self):
|
|
with self.assertRaisesRegex(ValueError, "Brackets are not balanced"):
|
|
str_to_sdy_sharding_rule("i (j k->j")
|
|
|
|
def test_sharding_rule_empty_compound_dim(self):
|
|
with self.assertRaisesRegex(
|
|
ValueError, "Brackets should contain at least two factors"):
|
|
str_to_sdy_sharding_rule("i ( ) j k->j")
|
|
|
|
def test_sharding_rule_one_factorcompound_dim(self):
|
|
with self.assertRaisesRegex(
|
|
ValueError, "Brackets should contain at least two factors"):
|
|
str_to_sdy_sharding_rule("i (j ) k->j")
|
|
|
|
def test_sharding_rule_nested_brackets(self):
|
|
with self.assertRaisesRegex(
|
|
ValueError, "Compound factors should be one level"):
|
|
str_to_sdy_sharding_rule("i (j (k))->j")
|
|
|
|
def test_sharding_rule_unknown_char(self):
|
|
with self.assertRaisesRegex(ValueError, "Unknown character"):
|
|
str_to_sdy_sharding_rule("i; j->j")
|
|
|
|
def test_sharding_rule_unknown_single_char_ellipse(self):
|
|
with self.assertRaisesRegex(ValueError, "Unknown character"):
|
|
str_to_sdy_sharding_rule("…j->…j")
|
|
|
|
def test_sharding_rule_ellipsis_not_leading_dim(self):
|
|
with self.assertRaisesRegex(
|
|
ValueError, "Ellipsis can only be used at the beginning of a dimension"):
|
|
str_to_sdy_sharding_rule("i ... -> j")
|
|
|
|
def test_sharding_rule_ellipsis_inside_compound_dim(self):
|
|
with self.assertRaisesRegex(
|
|
ValueError, "Ellipsis can only be used at the beginning of a dimension"):
|
|
str_to_sdy_sharding_rule("i, (..., j) -> j")
|
|
|
|
def test_sharding_rule_scalar_operand_scalar_result(self):
|
|
rule = str_to_sdy_sharding_rule("->")
|
|
self.assertEqual(str(rule), "SdyShardingRule(((),), ((),), {})")
|
|
|
|
def test_sharding_rule_one_scalar_operand(self):
|
|
rule = str_to_sdy_sharding_rule("i j, , k->j")
|
|
self.assertEqual(
|
|
str(rule), "SdyShardingRule((('i', 'j'), (), ('k',)), (('j',),), {})")
|
|
|
|
def test_sharding_rule_factor_elementwise_add(self):
|
|
# An ellipsis without a number ... is treated as the same as ...0.
|
|
rule = str_to_sdy_sharding_rule("...0 i j, ...1 i j -> ...i j")
|
|
self.assertEqual(
|
|
str(rule),
|
|
"SdyShardingRule((('…0', 'i', 'j'), ('…1', 'i', 'j')), (('…0', 'i',"
|
|
" 'j'),), {})")
|
|
|
|
def test_sharding_rule_factor_vector_scalar_add(self):
|
|
rule = str_to_sdy_sharding_rule("...87 i, -> ...87 i")
|
|
self.assertEqual(
|
|
str(rule),
|
|
"SdyShardingRule((('…87', 'i'), ()), (('…87', 'i'),), {})")
|
|
|
|
def test_sharding_rule_factor_reshape_combining(self):
|
|
rule = str_to_sdy_sharding_rule("i j -> (i j)")
|
|
self.assertEqual(
|
|
str(rule), "SdyShardingRule((('i', 'j'),), ((('i', 'j'),),), {})")
|
|
|
|
def test_sharding_rule_factor_reshape_reordering(self):
|
|
rule = str_to_sdy_sharding_rule("(j i) -> (i j)", i=10, j=20)
|
|
self.assertEqual(
|
|
str(rule),
|
|
"SdyShardingRule(((('j', 'i'),),), ((('i', 'j'),),), {'i': 10, 'j':"
|
|
" 20})")
|
|
|
|
def test_sharding_rule_factor_compound_then_individual(self):
|
|
rule = str_to_sdy_sharding_rule("(i j) (j k) i -> j k")
|
|
self.assertEqual(
|
|
str(rule),
|
|
"SdyShardingRule(((('i', 'j'), ('j', 'k'), 'i'),), (('j', 'k'),), {})")
|
|
|
|
def test_sharding_rule_factor_individual_then_compound(self):
|
|
rule = str_to_sdy_sharding_rule("i j k -> (i j) (j k)")
|
|
self.assertEqual(
|
|
str(rule),
|
|
"SdyShardingRule((('i', 'j', 'k'),), ((('i', 'j'), ('j', 'k')),), {})")
|
|
|
|
def test_sharding_rule_factor_infer_k(self):
|
|
rule = str_to_sdy_sharding_rule("i_ (j k)-> j foo (m bar_24)", k=10, m=10, bar_24=20)
|
|
self.assertEqual(
|
|
str(rule),
|
|
"SdyShardingRule((('i_', ('j', 'k')),), (('j', 'foo', ('m', 'bar_24'))"
|
|
",), {'k': 10, 'm': 10, 'bar_24': 20})")
|
|
|
|
|
|
class SdyShardingRuleConversionTest(jtu.JaxTestCase):
|
|
|
|
def run(self, result=None):
|
|
with ir.Context() as ctx, ir.Location.unknown(ctx):
|
|
sdy.register_dialect(ctx)
|
|
stablehlo.register_dialect(ctx)
|
|
module = ir.Module.create()
|
|
with ir.InsertionPoint(module.body):
|
|
super().run(result)
|
|
|
|
def get_tensor_type(self, shape):
|
|
return ir.RankedTensorType.get(shape, ir.F32Type.get())
|
|
|
|
def create_tensor_value(self, shape):
|
|
return ir.Operation.create(
|
|
"stablehlo.custom_call",
|
|
results=[self.get_tensor_type(shape)],
|
|
attributes=dict(call_target_name=ir.StringAttr.get("dummy_target"))
|
|
).result
|
|
|
|
def test_conversion_rule_op_mismatch_in_operands_num(self):
|
|
opnd0 = self.create_tensor_value((16, 32))
|
|
opnd1 = self.create_tensor_value((16, 32))
|
|
result = ir.Operation.create(
|
|
"stablehlo.custom_call",
|
|
results=[self.get_tensor_type((16, 32))],
|
|
operands=[opnd0, opnd1,],
|
|
attributes=dict(call_target_name=ir.StringAttr.get("foo")),)
|
|
rule = str_to_sdy_sharding_rule("i j-> i j")
|
|
with self.assertRaisesRegex(
|
|
ValueError,
|
|
"Sharding rule has 1 operands, but the operation has 2 operands"):
|
|
sdy_sharding_rule_to_mlir(rule,
|
|
[result.operands[0].type, result.operands[1].type],
|
|
[result.result.type,])
|
|
|
|
def test_conversion_rule_op_mismatch_in_operands_rank(self):
|
|
opnd0 = self.create_tensor_value((16, 32))
|
|
opnd1 = self.create_tensor_value((16, 32))
|
|
result = ir.Operation.create(
|
|
"stablehlo.custom_call",
|
|
results=[self.get_tensor_type((16, 32))],
|
|
operands=[opnd0, opnd1,],
|
|
attributes=dict(call_target_name=ir.StringAttr.get("foo")),)
|
|
rule = str_to_sdy_sharding_rule("i j, i j k-> i j")
|
|
with self.assertRaisesRegex(
|
|
ValueError,
|
|
"Sharding rule 1th operand has rank 3, but the operation 1th "
|
|
"operand has rank 2"):
|
|
sdy_sharding_rule_to_mlir(rule,
|
|
[result.operands[0].type, result.operands[1].type],
|
|
[result.result.type,])
|
|
|
|
def test_conversion_rule_op_mismatch_in_results_num(self):
|
|
opnd0 = self.create_tensor_value((16, 32))
|
|
opnd1 = self.create_tensor_value((16, 32))
|
|
result = ir.Operation.create(
|
|
"stablehlo.custom_call",
|
|
results=[self.get_tensor_type((16, 32))],
|
|
operands=[opnd0,
|
|
opnd1,],
|
|
attributes=dict(call_target_name=ir.StringAttr.get("foo")),)
|
|
rule = str_to_sdy_sharding_rule("i j, i j -> i j, i j")
|
|
with self.assertRaisesRegex(
|
|
ValueError,
|
|
"Sharding rule has 2 results, but the operation has 1 results"):
|
|
sdy_sharding_rule_to_mlir(rule,
|
|
[result.operands[0].type, result.operands[1].type],
|
|
[result.result.type,])
|
|
|
|
def test_conversion_rule_op_mismatch_in_results_dim(self):
|
|
opnd0 = self.create_tensor_value((16, 32))
|
|
opnd1 = self.create_tensor_value((16, 32))
|
|
result = ir.Operation.create(
|
|
"stablehlo.custom_call",
|
|
results=[self.get_tensor_type((16, 32))],
|
|
operands=[opnd0, opnd1,],
|
|
attributes=dict(call_target_name=ir.StringAttr.get("foo")))
|
|
rule = str_to_sdy_sharding_rule("i j, i j -> i j k")
|
|
with self.assertRaisesRegex(
|
|
ValueError,
|
|
"Sharding rule 0th result has rank 3, but the operation 0th "
|
|
"result has rank 2"):
|
|
sdy_sharding_rule_to_mlir(rule,
|
|
[result.operands[0].type, result.operands[1].type],
|
|
[result.result.type,])
|
|
|
|
def test_conversion_factor_has_two_sizes(self):
|
|
opnd0 = self.create_tensor_value((16, 32))
|
|
opnd1 = self.create_tensor_value((16, 32))
|
|
result = ir.Operation.create(
|
|
"stablehlo.custom_call",
|
|
results=[self.get_tensor_type((16, 64))],
|
|
operands=[opnd0, opnd1,],
|
|
attributes=dict(call_target_name=ir.StringAttr.get("foo")))
|
|
rule = str_to_sdy_sharding_rule("i j, i j -> i j")
|
|
with self.assertRaisesRegex(
|
|
ValueError,
|
|
"Factor j corresponds to two sizes: 32 and 64"):
|
|
sdy_sharding_rule_to_mlir(rule,
|
|
[result.operands[0].type, result.operands[1].type],
|
|
[result.result.type,])
|
|
|
|
def test_conversion_batching_dim_has_two_sizes(self):
|
|
opnd0 = self.create_tensor_value((16, 32))
|
|
opnd1 = self.create_tensor_value((16, 32))
|
|
result = ir.Operation.create(
|
|
"stablehlo.custom_call",
|
|
results=[self.get_tensor_type((16, 64))],
|
|
operands=[opnd0, opnd1,],
|
|
attributes=dict(call_target_name=ir.StringAttr.get("foo")))
|
|
rule = str_to_sdy_sharding_rule("..., ... -> ...")
|
|
with self.assertRaisesRegex(
|
|
ValueError,
|
|
"Batching dimension 0_1 corresponds to two sizes: 32 and 64"):
|
|
sdy_sharding_rule_to_mlir(rule,
|
|
[result.operands[0].type, result.operands[1].type],
|
|
[result.result.type,],)
|
|
|
|
def test_conversion_invalid_batching_dim(self):
|
|
opnd0 = self.create_tensor_value((16, 32))
|
|
opnd1 = self.create_tensor_value((16, 32))
|
|
result = ir.Operation.create(
|
|
"stablehlo.custom_call",
|
|
results=[self.get_tensor_type((16, 32))],
|
|
operands=[opnd0, opnd1,],
|
|
attributes=dict(call_target_name=ir.StringAttr.get("foo")),)
|
|
rule = str_to_sdy_sharding_rule("... i j k, ... i j k -> ... i j k")
|
|
with self.assertRaisesRegex(
|
|
ValueError,
|
|
"Sharding rule 0th operand has rank 3, but the operation 0th operand has rank 2"):
|
|
sdy_sharding_rule_to_mlir(rule,
|
|
[result.operands[0].type, result.operands[1].type],
|
|
[result.result.type,])
|
|
|
|
def test_conversion_compound_dimension_size_mismatch(self):
|
|
opnd = self.create_tensor_value((2, 4))
|
|
result = ir.Operation.create(
|
|
"stablehlo.custom_call",
|
|
results=[self.get_tensor_type((9,))],
|
|
operands=[opnd,],
|
|
attributes=dict(call_target_name=ir.StringAttr.get("foo")))
|
|
rule = str_to_sdy_sharding_rule("i j -> (i j)")
|
|
with self.assertRaisesRegex(
|
|
ValueError,
|
|
"0th result actual size 9 doesn't match the size 8 derived from the"
|
|
" compound factors"):
|
|
sdy_sharding_rule_to_mlir(rule,
|
|
[result.operands[0].type],
|
|
[result.result.type,])
|
|
|
|
def test_conversion_elementwise_rule_mismatching_ellipsis_rank(self):
|
|
opnd0 = self.create_tensor_value((16, 32))
|
|
opnd1 = self.create_tensor_value((16,))
|
|
result = ir.Operation.create(
|
|
"stablehlo.custom_call",
|
|
results=[self.get_tensor_type((16, 32))],
|
|
operands=[opnd0, opnd1,],
|
|
attributes=dict(call_target_name=ir.StringAttr.get("foo")))
|
|
rule = str_to_sdy_sharding_rule("..., ... -> ...")
|
|
with self.assertRaisesRegex(
|
|
ValueError,
|
|
"Ellipsis represents different number of leading dimensions 2 and 1"):
|
|
sdy_sharding_rule_to_mlir(rule,
|
|
[result.operands[0].type, result.operands[1].type],
|
|
[result.result.type,])
|
|
|
|
def test_conversion_compound_then_individual(self):
|
|
opnd = self.create_tensor_value((8,))
|
|
result = ir.Operation.create(
|
|
"stablehlo.custom_call",
|
|
results=[self.get_tensor_type((2,4))],
|
|
operands=[opnd,],
|
|
attributes=dict(call_target_name=ir.StringAttr.get("foo")))
|
|
rule = str_to_sdy_sharding_rule("(i j) -> i j")
|
|
mlir_rule = sdy_sharding_rule_to_mlir(rule,
|
|
[result.operands[0].type],
|
|
[result.result.type,])
|
|
self.assertEqual(
|
|
str(mlir_rule),
|
|
"#sdy.op_sharding_rule<([ij])->([i, j]) {i=2, j=4}>")
|
|
|
|
def test_conversion_elementwise_rule_scalar_instance(self):
|
|
opnd0 = self.create_tensor_value(())
|
|
opnd1 = self.create_tensor_value(())
|
|
result = ir.Operation.create(
|
|
"stablehlo.custom_call",
|
|
results=[self.get_tensor_type(())],
|
|
operands=[opnd0, opnd1],
|
|
attributes=dict(call_target_name=ir.StringAttr.get("foo")),)
|
|
rule = str_to_sdy_sharding_rule("..., ... -> ...")
|
|
mlir_rule = sdy_sharding_rule_to_mlir(rule,
|
|
[result.operands[0].type, result.operands[1].type],
|
|
[result.result.type,])
|
|
self.assertEqual(
|
|
str(mlir_rule),
|
|
"#sdy.op_sharding_rule<([], [])->([])>")
|
|
|
|
def test_conversion_elementwise_rule_2D_instance(self):
|
|
opnd0 = self.create_tensor_value((16, 32))
|
|
opnd1 = self.create_tensor_value((16, 32))
|
|
result = ir.Operation.create(
|
|
"stablehlo.custom_call",
|
|
results=[self.get_tensor_type((16, 32))],
|
|
operands=[opnd0, opnd1,],
|
|
attributes=dict(call_target_name=ir.StringAttr.get("foo")),)
|
|
rule = str_to_sdy_sharding_rule("..., ... -> ...")
|
|
mlir_rule = sdy_sharding_rule_to_mlir(rule,
|
|
[result.operands[0].type, result.operands[1].type],
|
|
[result.result.type,])
|
|
self.assertEqual(
|
|
str(mlir_rule),
|
|
"#sdy.op_sharding_rule<([i, j], [i, j])->([i, j]) {i=16, j=32}>")
|
|
|
|
def test_conversion_vector_scalar_add_2D_instance(self):
|
|
opnd0 = self.create_tensor_value((16, 32))
|
|
opnd1 = self.create_tensor_value(())
|
|
result = ir.Operation.create(
|
|
"stablehlo.custom_call",
|
|
results=[self.get_tensor_type((16, 32))],
|
|
operands=[opnd0, opnd1,],
|
|
attributes=dict(call_target_name=ir.StringAttr.get("foo")),)
|
|
rule = str_to_sdy_sharding_rule("..., -> ...")
|
|
mlir_rule = sdy_sharding_rule_to_mlir(rule,
|
|
[result.operands[0].type, result.operands[1].type],
|
|
[result.result.type,])
|
|
self.assertEqual(
|
|
str(mlir_rule),
|
|
"#sdy.op_sharding_rule<([i, j], [])->([i, j]) {i=16, j=32}>")
|
|
|
|
def test_conversion_reshape_rule(self):
|
|
opnd0 = self.create_tensor_value((2, 4))
|
|
result = ir.Operation.create(
|
|
"stablehlo.custom_call",
|
|
results=[self.get_tensor_type((8,))],
|
|
operands=[opnd0,],
|
|
attributes=dict(call_target_name=ir.StringAttr.get("foo")))
|
|
rule = str_to_sdy_sharding_rule("i j -> (i j)")
|
|
mlir_rule = sdy_sharding_rule_to_mlir(rule,
|
|
[result.operands[0].type],
|
|
[result.result.type,])
|
|
self.assertEqual(
|
|
str(mlir_rule),
|
|
"#sdy.op_sharding_rule<([i, j])->([ij]) {i=2, j=4}>")
|
|
|
|
def test_conversion_contracting_dim_matmul(self):
|
|
opnd0 = self.create_tensor_value((16, 32))
|
|
opnd1 = self.create_tensor_value((32, 8))
|
|
result = ir.Operation.create(
|
|
"stablehlo.custom_call",
|
|
results=[self.get_tensor_type((16, 8))],
|
|
operands=[opnd0, opnd1,],
|
|
attributes=dict(call_target_name=ir.StringAttr.get("foo")))
|
|
rule = str_to_sdy_sharding_rule("... contracting_dim, contracting_dim k -> ... k")
|
|
mlir_rule = sdy_sharding_rule_to_mlir(rule,
|
|
[result.operands[0].type, result.operands[1].type],
|
|
[result.result.type,])
|
|
self.assertEqual(
|
|
str(mlir_rule),
|
|
"#sdy.op_sharding_rule<([i, j], [j, k])->([i, k]) {i=16, j=32, k=8}>")
|
|
|
|
|
|
def test_conversion_multiple_batching_groups(self):
|
|
opnd0 = self.create_tensor_value((4, 5, 16, 32))
|
|
opnd1 = self.create_tensor_value((6, 7, 8, 32, 16))
|
|
result = ir.Operation.create(
|
|
"stablehlo.custom_call",
|
|
results=[self.get_tensor_type((4, 5, 32, 16))],
|
|
operands=[opnd0, opnd1,],
|
|
attributes=dict(call_target_name=ir.StringAttr.get("foo")))
|
|
rule = str_to_sdy_sharding_rule("... j i, ...1 i j -> ...i j")
|
|
mlir_rule = sdy_sharding_rule_to_mlir(rule,
|
|
[result.operands[0].type, result.operands[1].type],
|
|
[result.result.type,])
|
|
self.assertEqual(
|
|
str(mlir_rule),
|
|
"#sdy.op_sharding_rule<([i, j, k, l], [m, n, o, l, k])->([i, j, l, k]) {i=4, j=5, k=16, l=32, m=6, n=7, o=8}>")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
absltest.main(testLoader=jtu.JaxTestLoader())
|