mirror of
https://github.com/ROCm/jax.git
synced 2025-04-14 10:56:06 +00:00

These docstrings do not make the tests any more clear and typically just duplicate the test module name. PiperOrigin-RevId: 737611977
296 lines
8.6 KiB
Python
296 lines
8.6 KiB
Python
# Copyright 2019 The JAX Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# https://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from absl.testing import absltest
|
|
|
|
import jax
|
|
import numpy as np
|
|
from unittest import SkipTest
|
|
|
|
from jax._src import api
|
|
from jax._src import test_util as jtu
|
|
from jax import numpy as jnp
|
|
from jax.experimental import pjit
|
|
from jax.experimental.shard_map import shard_map
|
|
from jax.sharding import PartitionSpec as P
|
|
|
|
jax.config.parse_flags_with_absl()
|
|
|
|
|
|
@jtu.with_config(jax_debug_nans=True)
|
|
class DebugNaNsTest(jtu.JaxTestCase):
|
|
|
|
def testSinc(self):
|
|
# Regression test for #6936
|
|
self.assertEqual(jnp.sinc(0.0), 1.0)
|
|
|
|
def testSingleResultPrimitiveNoNaN(self):
|
|
A = jnp.array([[1., 2.], [2., 3.]])
|
|
ans = jnp.tanh(A)
|
|
ans.block_until_ready()
|
|
|
|
def testMultipleResultPrimitiveNoNaN(self):
|
|
A = jnp.array([[1., 2.], [2., 3.]])
|
|
ans, _ = jnp.linalg.eigh(A)
|
|
ans.block_until_ready()
|
|
|
|
def testJitComputationNoNaN(self):
|
|
A = jnp.array([[1., 2.], [2., 3.]])
|
|
ans = jax.jit(jnp.tanh)(A)
|
|
ans.block_until_ready()
|
|
|
|
def testJitComputationNaN(self):
|
|
A = jnp.array(0.)
|
|
with self.assertRaises(FloatingPointError):
|
|
ans = jax.jit(lambda x: 0. / x)(A)
|
|
ans.block_until_ready()
|
|
|
|
@jax.debug_nans(False)
|
|
def testJitComputationNaNContextManager(self):
|
|
A = jnp.array(0.)
|
|
f = jax.jit(lambda x: 0. / x)
|
|
ans = f(A)
|
|
ans = f(A)
|
|
with self.assertRaises(FloatingPointError):
|
|
with jax.debug_nans(True):
|
|
ans = f(A)
|
|
ans.block_until_ready()
|
|
|
|
def testSingleResultPrimitiveNaN(self):
|
|
A = jnp.array(0.)
|
|
with self.assertRaises(FloatingPointError):
|
|
ans = 0. / A
|
|
ans.block_until_ready()
|
|
|
|
@jtu.sample_product(jit=jtu.JIT_IMPLEMENTATION)
|
|
def testCallDeoptimized(self, jit):
|
|
@jit
|
|
def f(x):
|
|
return jax.lax.cond(
|
|
x == 1, lambda _: np.nan, lambda _: 2., operand=None)
|
|
|
|
# This makes sure, when using the C++ jit, that the Python code has been
|
|
# run to compile, and the next call won't go through `cache_miss`.
|
|
f(2)
|
|
# 'cond' not 'xla_call'
|
|
msg = r"invalid value \(nan\) encountered in .*cond.*"
|
|
with self.assertRaisesRegex(FloatingPointError, msg):
|
|
f(1)
|
|
|
|
def testShardMap(self):
|
|
mesh = jax.make_mesh((1,), ('x',))
|
|
f = shard_map(lambda x: 0. / x, mesh=mesh, in_specs=(P('x')), out_specs=P('x'))
|
|
# For the Cpp pmap, the first execution always goes through Python.
|
|
f(jnp.array([1.]))
|
|
|
|
with self.assertRaisesRegex(
|
|
FloatingPointError,
|
|
r"Invalid value \(nan\) encountered in sharded computation"):
|
|
ans = f(jnp.array([0.]))
|
|
ans.block_until_ready()
|
|
|
|
if jax.device_count() >= 2:
|
|
with self.assertRaisesRegex(
|
|
FloatingPointError,
|
|
r"Invalid value \(nan\) encountered in sharded computation"):
|
|
ans = f(jnp.array([1., 0.]))
|
|
ans.block_until_ready()
|
|
|
|
def testPmap(self):
|
|
pmap_funcs = [api._cpp_pmap]
|
|
|
|
for pmap in pmap_funcs:
|
|
f = pmap(lambda x: 0. / x)
|
|
# For the Cpp pmap, the first execution always goes through Python.
|
|
f(jnp.array([1.]))
|
|
|
|
with self.assertRaisesRegex(
|
|
FloatingPointError,
|
|
r"invalid value \(nan\) encountered in div"):
|
|
ans = f(jnp.array([0.]))
|
|
ans.block_until_ready()
|
|
|
|
if jax.device_count() >= 2:
|
|
with self.assertRaisesRegex(
|
|
FloatingPointError,
|
|
r"Invalid value \(nan\) encountered in parallel computation"):
|
|
ans = f(jnp.array([1., 0.]))
|
|
ans.block_until_ready()
|
|
|
|
def testGradPmap(self):
|
|
@jax.jit
|
|
def f(x):
|
|
y = x**2
|
|
return jnp.log(y)
|
|
|
|
_, f_vjp = jax.vjp(jax.pmap(f), jnp.zeros([1]))
|
|
|
|
with self.assertRaisesRegex(
|
|
FloatingPointError,
|
|
r"invalid value \(nan\) encountered in mul\nWhen differentiating"):
|
|
ans, = f_vjp(jnp.ones([1]))
|
|
ans.block_until_ready()
|
|
|
|
def testGradShardMap(self):
|
|
@jax.jit
|
|
def f(x):
|
|
y = x**2
|
|
return jnp.log(y)
|
|
|
|
mesh = jax.make_mesh((1,), ('x',))
|
|
shmap_f = shard_map(f, mesh=mesh, in_specs=(P('x')), out_specs=P('x'))
|
|
_, f_vjp = jax.vjp(shmap_f, jnp.zeros([1]))
|
|
|
|
with self.assertRaisesRegex(
|
|
FloatingPointError, r"Invalid value \(nan\) encountered"):
|
|
ans, = f_vjp(jnp.ones([1]))
|
|
ans.block_until_ready()
|
|
|
|
def testPmapNoNaN(self):
|
|
ans = jax.pmap(lambda x: 0. / x)(jnp.array([1.]))
|
|
ans.block_until_ready()
|
|
|
|
@jtu.ignore_warning(message=".*is an experimental.*")
|
|
def testPjit(self):
|
|
if jax.device_count() < 2:
|
|
raise SkipTest("test requires >=2 devices")
|
|
|
|
p = jax.sharding.PartitionSpec('x')
|
|
f = pjit.pjit(lambda x: 0. / x, in_shardings=p, out_shardings=p)
|
|
|
|
with jax.sharding.Mesh(np.array(jax.local_devices()[:2]), ('x',)):
|
|
with self.assertRaises(FloatingPointError):
|
|
ans = f(jnp.array([0., 1.]))
|
|
ans.block_until_ready()
|
|
|
|
def testDebugNansJitWithDonation(self):
|
|
# https://github.com/jax-ml/jax/issues/12514
|
|
a = jnp.array(0.)
|
|
with self.assertRaises(FloatingPointError):
|
|
ans = jax.jit(lambda x: 0. / x, donate_argnums=(0,))(a)
|
|
ans.block_until_ready()
|
|
|
|
def testDebugNansPmapWithDonation(self):
|
|
a = jnp.zeros((1,))
|
|
with self.assertRaises(FloatingPointError):
|
|
ans = jax.pmap(lambda x: 0. / x, donate_argnums=(0,))(a)
|
|
ans.block_until_ready()
|
|
|
|
@jtu.ignore_warning(message=".*is an experimental.*")
|
|
def testDebugNansPjitWithDonation(self):
|
|
if jax.device_count() < 2:
|
|
raise SkipTest("test requires >=2 devices")
|
|
|
|
p = jax.sharding.PartitionSpec('x')
|
|
f = pjit.pjit(lambda x: 0. / x,
|
|
in_shardings=p,
|
|
out_shardings=p,
|
|
donate_argnums=(0,))
|
|
|
|
with jax.sharding.Mesh(np.array(jax.local_devices()[:2]), ('x',)):
|
|
with self.assertRaises(FloatingPointError):
|
|
ans = f(jnp.array([0., 1.]))
|
|
ans.block_until_ready()
|
|
|
|
def testDebugNansZeroDiv(self):
|
|
inp = jnp.zeros(())
|
|
def f(x, y):
|
|
return x / y
|
|
|
|
with self.assertRaisesRegex(
|
|
FloatingPointError,
|
|
r"invalid value \(nan\) encountered in div"):
|
|
f(inp, inp)
|
|
|
|
with self.assertRaisesRegex(
|
|
FloatingPointError,
|
|
r"invalid value \(nan\) encountered in div"):
|
|
jax.jit(f)(inp, inp)
|
|
|
|
def testDebugNansInput(self):
|
|
|
|
@jax.jit
|
|
def f(x):
|
|
return x * 3.
|
|
|
|
with self.assertRaisesRegex(FloatingPointError, "the de-optimized function did not .*input"):
|
|
f(np.nan)
|
|
|
|
|
|
@jtu.with_config(jax_debug_infs=True)
|
|
class DebugInfsTest(jtu.JaxTestCase):
|
|
|
|
def testSingleResultPrimitiveNoInf(self):
|
|
A = jnp.array([[1., 2.], [2., 3.]])
|
|
ans = jnp.tanh(A)
|
|
ans.block_until_ready()
|
|
|
|
def testMultipleResultPrimitiveNoInf(self):
|
|
A = jnp.array([[1., 2.], [2., 3.]])
|
|
ans, _ = jnp.linalg.eigh(A)
|
|
ans.block_until_ready()
|
|
|
|
def testJitComputationNoInf(self):
|
|
A = jnp.array([[1., 2.], [2., 3.]])
|
|
ans = jax.jit(jnp.tanh)(A)
|
|
ans.block_until_ready()
|
|
|
|
def testSingleResultPrimitiveInf(self):
|
|
A = jnp.array(0.)
|
|
with self.assertRaises(FloatingPointError):
|
|
ans = 1. / A
|
|
ans.block_until_ready()
|
|
|
|
@jtu.sample_product(jit=jtu.JIT_IMPLEMENTATION)
|
|
def testCallDeoptimized(self, jit):
|
|
@jit
|
|
def f(x):
|
|
return jax.lax.cond(
|
|
x == 1, lambda _: np.inf, lambda _: 2., operand=None)
|
|
|
|
# This makes sure, when using the C++ jit, that the Python code has been
|
|
# run to compile, and the next call won't go through `cache_miss`.
|
|
f(2)
|
|
# 'cond' not 'xla_call'
|
|
msg = r"invalid value \(inf\) encountered in .*cond.*"
|
|
with self.assertRaisesRegex(FloatingPointError, msg):
|
|
f(1)
|
|
|
|
def testDebugNansDoesntCorruptCaches(self):
|
|
# https://github.com/jax-ml/jax/issues/6614
|
|
@jax.jit
|
|
def f(x):
|
|
return jnp.divide(x, x)
|
|
|
|
for _ in range(2):
|
|
try:
|
|
with jax.debug_nans(True):
|
|
jax.grad(f)(0.)
|
|
except FloatingPointError:
|
|
pass
|
|
|
|
def testDebugNansDoesntReturnDeoptimizedResult(self):
|
|
@jax.jit
|
|
def f(x):
|
|
y = x + 2 # avoid trivial dispatch path by adding some eqn
|
|
return jnp.nan, y
|
|
|
|
with self.assertRaisesRegex(FloatingPointError, "the de-optimized function did not .*literal"):
|
|
with jax.debug_nans(True):
|
|
f(3)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
absltest.main(testLoader=jtu.JaxTestLoader())
|