mirror of
https://github.com/ROCm/jax.git
synced 2025-04-14 10:56:06 +00:00
146 lines
5.2 KiB
Python
146 lines
5.2 KiB
Python
# Copyright 2019 The JAX Authors.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# https://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
from absl.testing import absltest
|
|
import jax.numpy as jnp
|
|
from jax.tools import jax_to_ir
|
|
from jax._src import test_util as jtu
|
|
|
|
try:
|
|
import tensorflow as tf
|
|
except ImportError:
|
|
tf = None # type: ignore
|
|
|
|
|
|
def axpy(a, x, y):
|
|
return a * x + y[:, jnp.newaxis]
|
|
|
|
|
|
class JaxToIRTest(absltest.TestCase):
|
|
|
|
def test_jax_to_hlo_axpy(self):
|
|
hlo_proto, hlo_text = jax_to_ir.jax_to_hlo(axpy, [
|
|
('y', jax_to_ir.parse_shape_str('f32[128]')),
|
|
('a', jax_to_ir.parse_shape_str('f32[]')),
|
|
('x', jax_to_ir.parse_shape_str('f32[128,2]')),
|
|
])
|
|
|
|
# Check that hlo_text contains a broadcast, add, and multiply.
|
|
self.assertIn('broadcast', hlo_text)
|
|
self.assertIn('add', hlo_text)
|
|
self.assertIn('multiply', hlo_text)
|
|
|
|
# Check that the HLO parameters are in the order we specified in the
|
|
# jax_to_hlo call.
|
|
self.assertIn('f32[128]{0} parameter(0)', hlo_text)
|
|
self.assertIn('f32[] parameter(1)', hlo_text)
|
|
self.assertIn('f32[128,2]{1,0} parameter(2)', hlo_text)
|
|
|
|
# Check that the parameters are in the expected order.
|
|
|
|
# TODO(jlebar): Ideally we'd check that hlo_proto can be deserialized to a
|
|
# valid HLO proto, but we don't seem to have access to hlo_pb2 at the
|
|
# moment, so the best we seem to be able to do is check that it's nonempty.
|
|
assert hlo_proto
|
|
|
|
def test_jax_to_hlo_with_constants(self):
|
|
|
|
def fn(a, b, x, y):
|
|
return a / b * x + y
|
|
|
|
_, hlo_text = jax_to_ir.jax_to_hlo(
|
|
fn,
|
|
input_shapes=[
|
|
('x', jax_to_ir.parse_shape_str('f32[128]')),
|
|
('y', jax_to_ir.parse_shape_str('f32[128]')),
|
|
],
|
|
constants={
|
|
'a': 123456,
|
|
'b': 4,
|
|
})
|
|
# Because we passed `a` and `b` as constants, they get constant-folded away
|
|
# by Python/JAX to a/b = 30864.
|
|
self.assertIn('constant(30864)', hlo_text)
|
|
self.assertNotIn('123456', hlo_text)
|
|
|
|
def test_parse_shape_str_invalid(self):
|
|
with self.assertRaisesRegex(ValueError, 'Invalid shape.*foo'):
|
|
jax_to_ir.parse_shape_str('foo[]')
|
|
|
|
@unittest.skipIf(tf is None, 'TensorFlow not installed.')
|
|
def test_jax_to_tf_axpy(self):
|
|
tf_proto, tf_text = jax_to_ir.jax_to_tf(axpy, [
|
|
('y', jax_to_ir.parse_shape_str('f32[128]')),
|
|
('a', jax_to_ir.parse_shape_str('f32[]')),
|
|
('x', jax_to_ir.parse_shape_str('f32[128,2]')),
|
|
])
|
|
|
|
# Check that we can re-import our graphdef.
|
|
gdef = tf.compat.v1.GraphDef()
|
|
gdef.ParseFromString(tf_proto)
|
|
g = tf.Graph()
|
|
with g.as_default():
|
|
tf.import_graph_def(gdef, name='')
|
|
|
|
# Check that the HLO parameters are named as we specified.
|
|
ops = {o.name: o for o in g.get_operations()
|
|
if o.name in ('y', 'a', 'x', 'jax2tf_out')}
|
|
self.assertLen(ops, 4)
|
|
self.assertIdentityOp(ops['y'], [128], jnp.float32)
|
|
self.assertIdentityOp(ops['a'], [], jnp.float32)
|
|
self.assertIdentityOp(ops['x'], [128, 2], jnp.float32)
|
|
self.assertIdentityOp(ops['jax2tf_out'], [128, 2], jnp.float32)
|
|
|
|
def assertIdentityOp(self, op, expected_shape, expected_dtype):
|
|
self.assertEqual(op.type, 'Identity')
|
|
output, = op.outputs
|
|
self.assertEqual(output.shape, expected_shape)
|
|
self.assertEqual(output.dtype, expected_dtype)
|
|
|
|
def test_parse_shape_str(self):
|
|
self.assertParsedShape('f32[]', [], jnp.float32)
|
|
self.assertParsedShape('f32[1,2,3]', [1, 2, 3], jnp.float32)
|
|
self.assertParsedShape('pred[1]', [1], jnp.bool_)
|
|
if hasattr(jnp, 'int2'):
|
|
self.assertParsedShape('s2[1]', [1], jnp.int2)
|
|
self.assertParsedShape('s4[1]', [1], jnp.int4)
|
|
self.assertParsedShape('s8[1]', [1], jnp.int8)
|
|
self.assertParsedShape('s16[1]', [1], jnp.int16)
|
|
self.assertParsedShape('s32[1]', [1], jnp.int32)
|
|
self.assertParsedShape('s64[1]', [1], jnp.int64)
|
|
if hasattr(jnp, 'uint2'):
|
|
self.assertParsedShape('u2[1]', [1], jnp.uint2)
|
|
self.assertParsedShape('u4[1]', [1], jnp.uint4)
|
|
self.assertParsedShape('u8[1]', [1], jnp.uint8)
|
|
self.assertParsedShape('u16[1]', [1], jnp.uint16)
|
|
self.assertParsedShape('u32[1]', [1], jnp.uint32)
|
|
self.assertParsedShape('u64[1]', [1], jnp.uint64)
|
|
self.assertParsedShape('f16[1]', [1], jnp.float16)
|
|
self.assertParsedShape('f32[1]', [1], jnp.float32)
|
|
self.assertParsedShape('f64[1]', [1], jnp.float64)
|
|
self.assertParsedShape('bf16[1]', [1], jnp.bfloat16)
|
|
self.assertParsedShape('c64[1]', [1], jnp.complex64)
|
|
self.assertParsedShape('c128[1]', [1], jnp.complex128)
|
|
|
|
def assertParsedShape(self, s: str, expected_shape, expected_dtype):
|
|
p = jax_to_ir.parse_shape_str(s)
|
|
self.assertEqual(p.shape, tuple(expected_shape))
|
|
self.assertEqual(p.dtype, expected_dtype)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
absltest.main(testLoader=jtu.JaxTestLoader())
|